Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
J Pestic Sci ; 46(1): 60-67, 2021 Feb 20.
Article in English | MEDLINE | ID: mdl-33746547

ABSTRACT

Insect juvenile hormone (JH) mimics (JHMs) are known to have ovicidal effects if applied to adult females or eggs. Here, we examined the effects of exogenous JHMs on embryonic development of the bean bug, Riptortus pedestris. The expression profiles of JH early response genes and JH biosynthetic enzymes indicated that JH titer was low for the first 3 days of the egg stage and increased thereafter. Application of JH III skipped bisepoxide (JHSB3) or JHM on Day 0 eggs when JH titer was low caused reduced hatchability, and the embryos mainly arrested in mid- or late embryonic stage. Application of JHMs on Day 5 eggs also resulted in an arrest, but this was less effective compared with Day 0 treatment. Interestingly, ovicidal activity of synthetic JHMs was much lower than that of JHSB3. This study will contribute to developing novel insecticides that are selective among insect species.

2.
Int J Biol Macromol ; 124: 1274-1280, 2019 Mar 01.
Article in English | MEDLINE | ID: mdl-30521897

ABSTRACT

A novel thin-film electrolyte (TFE) based on chitosan (CS) with 1­ethyl­3­methylimidazolium tetrafluoroborate (EMImBF4) was prepared by a new procedure for use as a solid electrolyte in electric double-layer capacitors (EDLCs). In this system, EMImBF4 plays important roles as both a dissolving solution and a charge carrier for EDLC application. By analyzing and characterizing the obtained products, the CS-TFEs showed a surface without CS/EMImBF4 phase separation and with high thermal stability and good tensile properties. The electrochemical properties were measured as the charge-discharge performance, the discharge capacitance, and alternating-current impedance. A test cell with CS-TFE with a calculated dry thin-film content of 80 wt% EMImBF4 showed a comparable IR drop and higher discharge capacitance than a liquid-phase EMImBF4 system and also showed low electrode/electrolyte interfacial resistance. Consequently, this novel CS-TFE is suitable for high-performance EDLCs and improves the safety of such devices.


Subject(s)
Chitosan/chemistry , Electrochemical Techniques/instrumentation , Electrolytes/chemistry , Imidazoles/chemistry , Ionic Liquids/chemistry , Electric Capacitance , Electrodes , Humans , Microscopy, Electron, Scanning
SELECTION OF CITATIONS
SEARCH DETAIL