Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
NPJ Vaccines ; 8(1): 158, 2023 Oct 13.
Article in English | MEDLINE | ID: mdl-37828070

ABSTRACT

Breakthrough findings in the clinical and preclinical development of tuberculosis (TB) vaccines have galvanized the field and suggest, for the first time since the development of bacille Calmette-Guérin (BCG), that a novel and protective TB vaccine is on the horizon. Here we highlight the TB vaccines that are in the development pipeline and review the basis for optimism in both the clinical and preclinical space. We describe immune signatures that could act as immunological correlates of protection (CoP) to facilitate the development and comparison of vaccines. Finally, we discuss new animal models that are expected to more faithfully model the pathology and complex immune responses observed in human populations.

2.
J Clin Invest ; 133(13)2023 07 03.
Article in English | MEDLINE | ID: mdl-37200108

ABSTRACT

Heterogeneity in human immune responses is difficult to model in standard laboratory mice. To understand how host variation affects Bacillus Calmette Guerin-induced (BCG-induced) immunity against Mycobacterium tuberculosis, we studied 24 unique collaborative cross (CC) mouse strains, which differ primarily in the genes and alleles they inherit from founder strains. The CC strains were vaccinated with or without BCG and challenged with aerosolized M. tuberculosis. Since BCG protects only half of the CC strains tested, we concluded that host genetics has a major influence on BCG-induced immunity against M. tuberculosis infection, making it an important barrier to vaccine-mediated protection. Importantly, BCG efficacy is dissociable from inherent susceptibility to tuberculosis (TB). T cell immunity was extensively characterized to identify components associated with protection that were stimulated by BCG and recalled after M. tuberculosis infection. Although considerable diversity is observed, BCG has little impact on the composition of T cells in the lung after infection. Instead, variability is largely shaped by host genetics. BCG-elicited protection against TB correlated with changes in immune function. Thus, CC mice can be used to define correlates of protection and to identify vaccine strategies that protect a larger fraction of genetically diverse individuals instead of optimizing protection for a single genotype.


Subject(s)
Mycobacterium bovis , Mycobacterium tuberculosis , Tuberculosis , Mice , Animals , Humans , BCG Vaccine/genetics , Tuberculosis/genetics , Tuberculosis/prevention & control , Mycobacterium tuberculosis/genetics , Genetic Background
3.
J Clin Invest ; 128(10): 4639-4653, 2018 10 01.
Article in English | MEDLINE | ID: mdl-30198910

ABSTRACT

Ferroptosis is a death program executed via selective oxidation of arachidonic acid-phosphatidylethanolamines (AA-PE) by 15-lipoxygenases. In mammalian cells and tissues, ferroptosis has been pathogenically associated with brain, kidney, and liver injury/diseases. We discovered that a prokaryotic bacterium, Pseudomonas aeruginosa, that does not contain AA-PE can express lipoxygenase (pLoxA), oxidize host AA-PE to 15-hydroperoxy-AA-PE (15-HOO-AA-PE), and trigger ferroptosis in human bronchial epithelial cells. Induction of ferroptosis by clinical P. aeruginosa isolates from patients with persistent lower respiratory tract infections was dependent on the level and enzymatic activity of pLoxA. Redox phospholipidomics revealed elevated levels of oxidized AA-PE in airway tissues from patients with cystic fibrosis (CF) but not with emphysema or CF without P. aeruginosa. We believe that the evolutionarily conserved mechanism of pLoxA-driven ferroptosis may represent a potential therapeutic target against P. aeruginosa-associated diseases such as CF and persistent lower respiratory tract infections.


Subject(s)
Apoptosis , Cystic Fibrosis/metabolism , Phosphatidylethanolamines/metabolism , Pseudomonas Infections/metabolism , Pseudomonas aeruginosa/metabolism , Respiratory Mucosa/metabolism , Respiratory Tract Infections/metabolism , Cell Line , Cystic Fibrosis/microbiology , Cystic Fibrosis/pathology , Epithelial Cells/metabolism , Epithelial Cells/microbiology , Epithelial Cells/pathology , Humans , Pseudomonas Infections/pathology , Pseudomonas aeruginosa/pathogenicity , Respiratory Mucosa/microbiology , Respiratory Mucosa/physiology , Respiratory Tract Infections/microbiology , Respiratory Tract Infections/pathology
4.
Biochemistry ; 55(23): 3329-40, 2016 06 14.
Article in English | MEDLINE | ID: mdl-27226387

ABSTRACT

Pseudomonas aeruginosa is an opportunistic pathogen that can cause nosocomial and chronic infections in immunocompromised patients. P. aeruginosa secretes a lipoxygenase, LoxA, but the biological role of this enzyme is currently unknown. LoxA is poorly similar in sequence to both soybean LOX-1 (s15-LOX-1) and human 15-LOX-1 (37 and 39%, respectively) yet has kinetics comparably fast versus those of s15-LOX-1 (at pH 6.5, Kcat = 181 ± 6 s(-1) and Kcat/KM = 16 ± 2 µM(-1) s(-1)). LoxA is capable of efficiently catalyzing the peroxidation of a broad range of free fatty acid (FA) substrates (e.g., AA and LA) with high positional specificity, indicating a 15-LOX. Its mechanism includes hydrogen atom abstraction [a kinetic isotope effect (KIE) of >30], yet LoxA is a poor catalyst against phosphoester FAs, suggesting that LoxA is not involved in membrane decomposition. LoxA also does not react with 5- or 15-HETEs, indicating poor involvement in lipoxin production. A LOX high-throughput screen of the LOPAC library yielded a variety of low-micromolar inhibitors; however, none selectively targeted LoxA over the human LOX isozymes. With respect to cellular activity, the level of LoxA expression is increased when P. aeruginosa undergoes the transition to a biofilm mode of growth, but LoxA is not required for biofilm growth on abiotic surfaces. However, LoxA does appear to be required for biofilm growth in association with the host airway epithelium, suggesting a role for LoxA in mediating bacterium-host interactions during colonization.


Subject(s)
Arachidonate 15-Lipoxygenase/chemistry , Arachidonate 15-Lipoxygenase/metabolism , Hydroxyeicosatetraenoic Acids/metabolism , Lipoxygenase Inhibitors/metabolism , Pseudomonas aeruginosa/enzymology , Amino Acid Sequence , Animals , Antibody Formation , Arachidonate 15-Lipoxygenase/immunology , Humans , Kinetics , Rabbits , Substrate Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...