Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
Add more filters











Publication year range
1.
Front Immunol ; 15: 1467774, 2024.
Article in English | MEDLINE | ID: mdl-39372408

ABSTRACT

Polycomb repressive complex 2 (PRC2) is an evolutionarily conserved epigenetic modifier responsible for tri-methylation of lysine 27 on histone H3 (H3K27me3). Previous studies have linked PRC2 to invariant natural killer T (iNKT) cell development, but its physiological and precise role remained unclear. To address this, we conditionally deleted Eed, a core subunit of PRC2, in mouse T cells. The results showed that Eed-deficient mice exhibited a severe reduction in iNKT cell numbers, particularly NKT1 and NKT17 cells, while conventional T cells and NKT2 cells remained intact. Deletion of Eed disrupted iNKT cell differentiation, leading to increased cell death, which was accompanied by a severe reduction in H3K27me3 levels and abnormal expression of Zbtb16, Cdkn2a, and Cdkn1a. Interestingly, Eed-deficient mice were highly susceptible to acetaminophen-induced liver injury and inflammation in an iNKT cell-dependent manner, highlighting the critical role of Eed-mediated H3K27me3 marks in liver-resident iNKT cells. These findings provide further insight into the epigenetic orchestration of iNKT cell-specific transcriptional programs.


Subject(s)
Histones , Mice, Knockout , Natural Killer T-Cells , Animals , Natural Killer T-Cells/immunology , Natural Killer T-Cells/metabolism , Mice , Histones/metabolism , Chemical and Drug Induced Liver Injury/immunology , Chemical and Drug Induced Liver Injury/metabolism , Cell Differentiation , Mice, Inbred C57BL , Histone Code , Epigenesis, Genetic , Acetaminophen/adverse effects , Cyclin-Dependent Kinase Inhibitor p21/metabolism , Cyclin-Dependent Kinase Inhibitor p21/genetics , Liver/metabolism , Liver/immunology , Liver/pathology , Cyclin-Dependent Kinase Inhibitor p16/genetics , Cyclin-Dependent Kinase Inhibitor p16/metabolism , Promyelocytic Leukemia Zinc Finger Protein/metabolism , Promyelocytic Leukemia Zinc Finger Protein/genetics
2.
J Cell Sci ; 137(15)2024 08 01.
Article in English | MEDLINE | ID: mdl-39037211

ABSTRACT

Muscle stem cells (MuSCs) play an indispensable role in postnatal muscle growth and hypertrophy in adults. MuSCs also retain a highly regenerative capacity and are therefore considered a promising stem cell source for regenerative therapy for muscle diseases. In this study, we identify tumor-suppressor protein Tob1 as a Pax7 target protein that negatively controls the population expansion of MuSCs. Tob1 protein is undetectable in the quiescent state but is upregulated during activation in MuSCs. Tob1 ablation in mice accelerates MuSC population expansion and boosts muscle regeneration. Moreover, inactivation of Tob1 in MuSCs ameliorates the efficiency of MuSC transplantation in a murine muscular dystrophy model. Collectively, selective targeting of Tob1 might be a therapeutic option for the treatment of muscular diseases, including muscular dystrophy and age-related sarcopenia.


Subject(s)
Muscle, Skeletal , PAX7 Transcription Factor , Regeneration , Stem Cells , Animals , Mice , Muscle, Skeletal/metabolism , PAX7 Transcription Factor/metabolism , PAX7 Transcription Factor/genetics , Stem Cells/metabolism , Stem Cells/cytology , Intracellular Signaling Peptides and Proteins/metabolism , Intracellular Signaling Peptides and Proteins/genetics , Cell Proliferation , Mice, Inbred C57BL
3.
Mol Phylogenet Evol ; 195: 108063, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38493988

ABSTRACT

Reef-building corals provide the structural basis for one of Earth's most spectacular and diverse but increasingly threatened ecosystems. The reef-building coral genus Acropora may have undergone substantial speciation during the Pleistocene climate and sea-level changes. Here, we aimed to evaluate the speciation history of four morphologically similar tabular Acropora species (Acropora aff. hyacinthus, A. cf. bifurcata, A. cf. cytherea, and A. cf. subulata) using an integrative approach with morphology, genetic, and reproduction methodology. Extensive morphological analyses showed that these four species are distinct and exhibited high gamete incompatibility, preventing hybridization. Furthermore, population structure and principal component analyses with SNPs (>60,000) indicated that these species were genetically distinct, and the ABBA-BABA test did not support introgression among these species. Many of their coding and noncoding RNA sequences showed high genetic variance at loci with high Fst values along the genome. Comparison of these orthologs with those of other Acropora species suggested that many of these genes are under positive selection, which could be associated with spawning time, gamete, and morphological divergence. Our findings show that the speciation of tabular Acropora occurred without hybridization, and the divergence accompanying the rapid evolution of genes in species-rich Acropora could be associated with speciation.


Subject(s)
Anthozoa , Ecosystem , Animals , Phylogeny , Anthozoa/genetics , Genetic Drift , Hybridization, Genetic , Genetic Speciation
4.
Front Cell Dev Biol ; 11: 1171495, 2023.
Article in English | MEDLINE | ID: mdl-37152284

ABSTRACT

The reef-building coral Acropora is a broadcast spawning hermaphrodite including more than 110 species in the Indo-Pacific. In addition, many sympatric species show synchronous spawning. The released gametes need to mate with conspecifics in the mixture of the gametes of many species for their species boundaries. However, the mechanism underlying the species recognition of conspecifics at fertilization remains unknown. We hypothesized that rapid molecular evolution (positive selection) in genes encoding gamete-composing proteins generates polymorphic regions that recognize conspecifics in the mixture of gametes from many species. We identified gamete proteins of Acropora digitifera using mass spectrometry and screened the genes that support branch site models that set the "foreground" branches showing strict fertilization specificity. ADAM10, ADAM17, Integrin α9, and Tetraspanin4 supported branch-site model and had positively selected site(s) that produced polymorphic regions. Therefore, we prepared antibodies against the proteins of A. digitifera that contained positively selected site(s) to analyze their functions in fertilization. The ADAM10 antibody reacted only with egg proteins of A. digitifera, and immunohistochemistry showed ADAM10 localized around the egg surface. Moreover, the ADAM10 antibody inhibited only A. digitifera fertilization but not the relative synchronous spawning species A. papillare. This study indicates that ADAM10 has evolved to gain fertilization specificity during speciation and contributes to species boundaries in this multi-species, synchronous-spawning, and species-rich genus.

5.
Commun Biol ; 6(1): 395, 2023 04 11.
Article in English | MEDLINE | ID: mdl-37041231

ABSTRACT

The decrease of antibody efficacy to mutated SARS-CoV-2 spike RBD explains the breakthrough infections and reinfections by Omicron variants. Here, we analyzed broadly neutralizing antibodies isolated from long-term hospitalized convalescent patients of early SARS-CoV-2 strains. One of the antibodies named NCV2SG48 is highly potent to broad SARS-CoV-2 variants including Omicron BA.1, BA.2, and BA.4/5. To reveal the mode of action, we determined the sequence and crystal structure of the Fab fragment of NCV2SG48 in a complex with spike RBD from the original, Delta, and Omicron BA.1. NCV2SG48 is from a minor VH but the multiple somatic hypermutations contribute to a markedly extended binding interface and hydrogen bonds to interact with conserved residues at the core receptor-binding motif of RBD, which efficiently neutralizes a broad spectrum of variants. Thus, eliciting the RBD-specific B cells to the longitudinal germinal center reaction confers potent immunity to broad SARS-CoV-2 variants emerging one after another.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Antibodies , Immunoglobulin Fab Fragments
6.
Int Immunol ; 35(4): 197-207, 2023 04 04.
Article in English | MEDLINE | ID: mdl-36413150

ABSTRACT

The immune evasion of SARS-CoV-2 Omicron variants caused by multiple amino acid replacements in the receptor-binding domain (RBD) of the spike protein wanes the effectiveness of antibodies elicited by current SARS-CoV-2 booster vaccination. The vaccines that target Omicron strains have been recently developed, however, there has been a concern yet to be addressed regarding the negative aspect of the immune response known as original antigenic sin. Here, we demonstrate that the breadth of neutralizing antibodies against SARS-CoV-2 variants is barely elicited by immunizing monovalent viral antigens via vaccination or natural infection in mice and human subjects. However, vaccination of Omicron BA.1 RBD to pre-immunized mice with the original RBD conferred sustained neutralizing activity to BA.1 and BA.2 not only original pseudoviruses. The acquisition of neutralizing antibody breadth was further confirmed in vaccinated-then-Omicron convalescent human sera in which neutralizing activity against BA.1 and BA.2 pseudoviruses was highly induced. Thus, our data suggest that Omicron-specific vaccines or the infection with Omicron viruses can boost potent neutralizing antibodies to the Omicron variants even in the host pre-vaccinated with the original antigen.


Subject(s)
COVID-19 , Animals , Humans , Mice , Antibodies, Neutralizing , Antibodies, Viral , Broadly Neutralizing Antibodies , COVID-19/prevention & control , SARS-CoV-2 , Vaccination
7.
Cancers (Basel) ; 14(17)2022 Aug 25.
Article in English | MEDLINE | ID: mdl-36077655

ABSTRACT

Most people infected by EBV acquire specific immunity, which then controls latent infection throughout their life. Immune surveillance of EBV-infected cells by cytotoxic CD4+ T cells has been recognized; however, the molecular mechanism of generating cytotoxic effector T cells of the CD4+ subset remains poorly understood. Here we compared phenotypic features and the transcriptome of EBV-specific effector-memory CD4+ T cells and CD8+ T cells in mice and found that both T cell types show cytotoxicity and, to our surprise, widely similar gene expression patterns relating to cytotoxicity. Similar to cytotoxic CD8+ T cells, EBV-specific cytotoxic CD4+ T cells from human peripheral blood expressed T-bet, Granzyme B, and Perforin and upregulated the degranulation marker, CD107a, immediately after restimulation. Furthermore, T-bet expression in cytotoxic CD4+ T cells was highly correlated with Granzyme B and Perforin expression at the protein level. Thus, differentiation of EBV-specific cytotoxic CD4+ T cells is possibly controlled by mechanisms shared by cytotoxic CD8+ T cells. T-bet-mediated transcriptional regulation may explain the similarity of cytotoxic effector differentiation between CD4+ T cells and CD8+ T cells, implicating that this differentiation pathway may be directed by environmental input rather than T cell subset.

8.
Microbiol Resour Announc ; 11(4): e0014322, 2022 Apr 21.
Article in English | MEDLINE | ID: mdl-35377186

ABSTRACT

We report the complete genome sequence of Lactococcus cremoris strain 7-1, which was isolated from urum, a traditional Mongolian milk product. Strain 7-1 adhered to porcine gastric mucin in a carbon source-dependent manner. The genome consists of a circular chromosome (2,557,589 bp; GC content, 35.7%) and two circular plasmids.

9.
Sci Rep ; 9(1): 6904, 2019 05 06.
Article in English | MEDLINE | ID: mdl-31061473

ABSTRACT

Studies using genome-wide single nucleotide polymorphisms (SNPs) have become commonplace in genetics and genomics, due to advances in high-throughput sequencing technologies. Since the numbers of required SNPs and samples vary depending on each research goal, genotyping technologies with high flexibility in the number of SNPs/samples and high repeatability have been intensively investigated. For example, the ultrahigh-multiplexed amplicon sequencing, Ion AmpliSeq, has been used as a high-throughput genotyping method mainly for diagnostic purposes. Here, we designed a custom panel targeting 3,187 genome-wide SNPs of fugu, Takifugu rubripes, and applied it for genotyping farmed fugu to test its feasibility in aquaculture studies. We sequenced two libraries consisting of different pools of individuals (n = 326 each) on the Illumina MiSeq sequencer. Consequently, over 99% target regions (3,178 SNPs) were amplified and 2,655 SNPs were available after filtering steps. Strong correlation was observed in the mean depth of coverage of each SNP between duplicate runs (r = 0.993). Genetic analysis using these genotype data successfully detected the known population structure and the sex determining locus of fugu. These results show the method is superior in repeatability and flexibility, and suits genetic studies including molecular breeding, such as marker assisted and genomic selection.


Subject(s)
Aquaculture , Genotyping Techniques/methods , High-Throughput Nucleotide Sequencing , Animals , Polymorphism, Single Nucleotide , Takifugu/genetics
10.
Article in English | MEDLINE | ID: mdl-30533613

ABSTRACT

Enterococcus gilvus CR1, isolated from raw cow's milk, can produce carotenoids. The complete genome sequence of this strain was determined using the PacBio RS II platform. The assembly was found to contain a circular chromosome, including carotenoid biosynthesis genes, and comprises 2,863,043 bp, with a G+C content of 41.86% and three plasmids.

11.
Genome Announc ; 6(27)2018 Jul 05.
Article in English | MEDLINE | ID: mdl-29976610

ABSTRACT

Lactobacillus paracasei EG9 is a strain isolated from well-ripened cheese and accelerates free amino acid production during cheese ripening. Its complete genome sequence was determined using the PacBio RS II platform, revealing a single circular chromosome of 2,927,257 bp, a G+C content of 46.59%, and three plasmids.

12.
Genome Announc ; 6(25)2018 Jun 21.
Article in English | MEDLINE | ID: mdl-29930046

ABSTRACT

Lactobacillus plantarum LQ80 is a strain isolated from liquid feed for pigs. We determined the complete genome sequence of this strain using the PacBio RS II platform. LQ80 contained a single circular chromosome of 3,230,192 bp, with 44.66% G+C content and seven plasmids.

13.
Genome Announc ; 6(18)2018 May 03.
Article in English | MEDLINE | ID: mdl-29724849

ABSTRACT

The complete genome sequence of Petrimonas sp. strain IBARAKI in a Dehalococcoides-containing culture was determined using the PacBio RS II platform. The genome is a single circular chromosome of 3,693,233 nucleotides (nt), with a GC content of 44%. This is the first genome sequence of a Petrimonas species.

14.
Genome Announc ; 6(8)2018 Feb 22.
Article in English | MEDLINE | ID: mdl-29472335

ABSTRACT

Lactococcus lactis subsp. lactis G50 is a strain with immunostimulating activity, isolated from Napier grass (Pennisetum purpureum). We determined the complete genome sequence of this strain using the PacBio RS II platform. The single circular chromosome consists of 2,346,663 bp, with 35.03% G+C content and no plasmids.

15.
Sci Rep ; 7(1): 2230, 2017 05 22.
Article in English | MEDLINE | ID: mdl-28533514

ABSTRACT

We have developed and characterized a bacterial consortium that reductively dechlorinates trichloroethene to ethene. Quantitative PCR analysis for the 16S rRNA and reductive dehalogenase genes showed that the consortium is highly enriched with Dehalococcoides spp. that have two vinyl chloride reductive dehalogenase genes, bvcA and vcrA, and a trichloroethene reductive dehalogenase gene, tceA. The metagenome analysis of the consortium by the next generation sequencer SOLiD 3 Plus suggests that a Dehalococcoides sp. that is highly homologous to D. mccartyi 195 and equipped with vcrA and tceA exists in the consortium. We isolated this Dehalococcoides sp. and designated it as D. mccartyi UCH-ATV1. As the growth of D. mccartyi UCH-ATV1 is too slow under isolated conditions, we constructed a consortium by mixing D. mccartyi UCH-ATV1 with several other bacteria and performed metagenomic sequencing using the single molecule DNA sequencer PacBio RS II. We successfully determined the complete genome sequence of D. mccartyi UCH-ATV1. The strain is equipped with vcrA and tceA, but lacks bvcA. Comparison with tag sequences of SOLiD 3 Plus from the original consortium shows a few differences between the sequences. This suggests that a genome rearrangement of Dehalococcoides sp. occurred during culture.


Subject(s)
Chloroflexi/genetics , Gene Rearrangement , Genome, Bacterial , Genomics , Chloroflexi/classification , Chloroflexi/metabolism , Ethylene Dichlorides/metabolism , Ethylenes/metabolism , Genomics/methods , High-Throughput Nucleotide Sequencing , Metagenome , Metagenomics/methods , Microbial Consortia , Vinyl Chloride/metabolism
16.
Hum Cell ; 30(3): 149-161, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28364362

ABSTRACT

PacBio RS II is the first commercialized third-generation DNA sequencer able to sequence a single molecule DNA in real-time without amplification. PacBio RS II's sequencing technology is novel and unique, enabling the direct observation of DNA synthesis by DNA polymerase. PacBio RS II confers four major advantages compared to other sequencing technologies: long read lengths, high consensus accuracy, a low degree of bias, and simultaneous capability of epigenetic characterization. These advantages surmount the obstacle of sequencing genomic regions such as high/low G+C, tandem repeat, and interspersed repeat regions. Moreover, PacBio RS II is ideal for whole genome sequencing, targeted sequencing, complex population analysis, RNA sequencing, and epigenetics characterization. With PacBio RS II, we have sequenced and analyzed the genomes of many species, from viruses to humans. Herein, we summarize and review some of our key genome sequencing projects, including full-length viral sequencing, complete bacterial genome and almost-complete plant genome assemblies, and long amplicon sequencing of a disease-associated gene region. We believe that PacBio RS II is not only an effective tool for use in the basic biological sciences but also in the medical/clinical setting.


Subject(s)
Genome/genetics , Sequence Analysis, DNA/methods , Animals , Communicable Diseases/microbiology , DNA Methylation , Genome, Bacterial/genetics , Genome, Plant/genetics , Genome, Viral/genetics , Humans
17.
Genome Announc ; 4(5)2016 Sep 01.
Article in English | MEDLINE | ID: mdl-27587811

ABSTRACT

The first complete genome sequence of Lactobacillus curvatus was determined by PacBio RS II. The single circular chromosome (1,848,756 bp, G+C content of 42.1%) of L. curvatus FBA2, isolated from fermented vegetables, contained low G+C regions (26.9% minimum) and 43 sets of >1,000-bp identical sequence pairs. No plasmids were detected.

18.
Genome Announc ; 3(4)2015 Aug 20.
Article in English | MEDLINE | ID: mdl-26294631

ABSTRACT

The first complete genome sequence of the type strain Pseudomonas aeruginosa (Schroeter 1872) Migula 1900 (DSM 50071(T)) was determined in a single contig by PacBio RS II. The genome (6,317,050 bp, G+C content of 66.52%) contained 10 sets of >1,000-bp identical sequence pairs and 183 tandem repeats.

19.
Genome Announc ; 3(4)2015 Aug 13.
Article in English | MEDLINE | ID: mdl-26272567

ABSTRACT

Here, we report the complete genome sequences of low-passage virulent and high-passage avirulent variants of pathogenic Leptospira interrogans serovar Manilae strain UP-MMC-NIID, a major causative agent of leptospirosis. While there were no major differences between the genome sequences, the levels of base modifications were higher in the avirulent variant.

20.
Genome Announc ; 3(4)2015 Jul 30.
Article in English | MEDLINE | ID: mdl-26227598

ABSTRACT

The first complete genome sequence of Clostridium sporogenes DSM 795(T), a nontoxigenic surrogate for Clostridium botulinum, was determined in a single contig using the PacBio single-molecule real-time technology. The genome (4,142,990 bp; G+C content, 27.98%) included 86 sets of >1,000-bp identical sequence pairs and 380 tandem repeats.

SELECTION OF CITATIONS
SEARCH DETAIL