Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 23
1.
EMBO Rep ; 2024 Jun 13.
Article En | MEDLINE | ID: mdl-38871984

The mammalian neocortex is formed by sequential radial migration of newborn excitatory neurons. Migrating neurons undergo a multipolar-to-bipolar transition at the subplate (SP) layer, where extracellular matrix (ECM) components are abundantly expressed. Here, we investigate the role of the ECM at the SP layer. We show that TGF-ß signaling-related ECM proteins, and their downstream effector, p-smad2/3, are selectively expressed in the SP layer. We also find that migrating neurons express a disintegrin and metalloproteinase with thrombospondin motif 2 (ADAMTS2), an ECM metalloproteinase, just below the SP layer. Knockdown and knockout of Adamts2 suppresses the multipolar-to-bipolar transition of migrating neurons and disturbs radial migration. Time-lapse luminescence imaging of TGF-ß signaling indicates that ADAMTS2 activates this signaling pathway in migrating neurons during the multipolar-to-bipolar transition at the SP layer. Overexpression of TGF-ß2 in migrating neurons partially rescues migration defects in ADAMTS2 knockout mice. Our data suggest that ADAMTS2 secreted by the migrating multipolar neurons activates TGF-ß signaling by ECM remodeling of the SP layer, which might drive the multipolar to bipolar transition.

2.
J Comp Neurol ; 532(6): e25627, 2024 Jun.
Article En | MEDLINE | ID: mdl-38813969

During development, cell-intrinsic and cell-extrinsic factors play important roles in neuronal differentiation; however, the underlying mechanisms in nonmammalian species remain largely unknown. We here investigated the mechanisms responsible for the differentiation of sensory input neurons in the chick entopallium, which receives its primary visual input via the tectofugal pathway from the nucleus rotundus. The results obtained revealed that input neurons in the entopallium expressed Potassium Voltage-Gated Channel Subfamily H Member 5 (KCNH5/EAG2) mRNA from embryonic day (E) 11. On the other hand, the onset of protein expression was E20, which was 1 day before hatching. We confirm that entopallium input neurons in chicks were generated during early neurogenesis in the lateral and ventral ventricular zones. Notably, neurons derived from the lateral (LP) and ventral pallium (VP) exhibited a spatially distinct distribution along the rostro-caudal axis. We further demonstrated that the expression of EAG2 was directly regulated by input activity from thalamic axons. Collectively, the present results reveal that thalamic input activity is essential for specifying input neurons among LP- and VP-derived early-generated neurons in the developing chick entopallium.


Neurogenesis , Thalamus , Animals , Chick Embryo , Neurogenesis/physiology , Thalamus/embryology , Thalamus/cytology , Thalamus/metabolism , Sensory Receptor Cells/physiology , Sensory Receptor Cells/metabolism , Sensory Receptor Cells/cytology , Chickens , Cell Differentiation/physiology , Gene Expression Regulation, Developmental/physiology
3.
Genes Cells ; 28(10): 679-693, 2023 Oct.
Article En | MEDLINE | ID: mdl-37584256

The evolutionally conserved Cdc7 kinase plays crucial roles in initiation of DNA replication as well as in other chromosomal events. To examine the roles of Cdc7 in brain development, we have generated mice carrying Cdc7 knockout in neural stem cells by using Nestin-Cre. The Cdc7Fl/Fl NestinCre mice were born, but exhibited severe growth retardation and impaired postnatal brain development. These mice exhibited motor dysfunction within 9 days after birth and did not survive for more than 19 days. The cerebral cortical layer formation was impaired, although the cortical cell numbers were not altered in the mutant. In the cerebellum undergoing hypoplasia, granule cells (CGC) decreased in number in Cdc7Fl/F l NestinCre mice compared to the control at E15-18, suggesting that Cdc7 is required for DNA replication and cell proliferation of CGC at mid embryonic stage (before embryonic day 15). On the other hand, the Purkinje cell numbers were not altered but its layer formation was impaired in the mutant. These results indicate differential roles of Cdc7 in DNA replication/cell proliferation in brain. Furthermore, the defects of layer formation suggest a possibility that Cdc7 may play an additional role in cell migration during neural development.


Cell Cycle Proteins , Protein Serine-Threonine Kinases , Animals , Mice , Cell Cycle Proteins/metabolism , Cerebellum/metabolism , DNA Replication , Nestin/genetics , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism
4.
Mol Psychiatry ; 28(6): 2370-2381, 2023 06.
Article En | MEDLINE | ID: mdl-36721027

ZBTB18/RP58 (OMIM *608433) is one of the pivotal genes responsible for 1q43q44 microdeletion syndrome (OMIM #612337) and its haploinsufficiency induces intellectual disability. However, the underlying pathological mechanism of ZBTB18/RP58 haploinsufficiency is unknown. In this study, we generated ZBTB18/RP58 heterozygous mice and found that these mutant mice exhibit multiple behavioral deficits, including impairment in motor learning, working memory, and memory flexibility, which are related to behaviors in people with intellectual disabilities, and show no gross abnormalities in their cytoarchitectures but dysplasia of the corpus callosum, which has been reported in certain population of patients with ZBTB18 haploinsufficiency as well as in those with 1q43q44 microdeletion syndrome, indicating that these mutant mice are a novel model of ZBTB18/RP58 haploinsufficiency, which reflects heterozygotic ZBTB18 missense, truncating variants and some phenotypes of 1q43q44 microdeletion syndrome based on ZBTB18/RP58 haploinsufficiency. Furthermore, these mice show glutamatergic synaptic dysfunctions, including a reduced glutamate receptor expression, altered properties of NMDA receptor-mediated synaptic responses, a decreased saturation level of long-term potentiation of excitatory synaptic transmission, and distinct morphological characteristics of the thick-type spines. Therefore, these results suggest that ZBTB18/RP58 haploinsufficiency leads to impaired excitatory synaptic maturation, which in turn results in cognitive dysfunction in ZBTB18 haploinsufficiency.


Cognitive Dysfunction , Intellectual Disability , Humans , Mice , Animals , Intellectual Disability/genetics , Haploinsufficiency/genetics , Corpus Callosum , Synaptic Transmission/genetics , Syndrome , Cognitive Dysfunction/genetics
5.
Life (Basel) ; 12(12)2022 Dec 09.
Article En | MEDLINE | ID: mdl-36556434

The developing neocortical vasculature exhibits a distinctive pattern in each layer. In murine embryos, vessels in the cortical plate (CP) are vertically oriented, whereas those in the intermediate zone (IZ) and the subventricular zone (SVZ) form a honeycomb structure. The formation of tissue-specific vessels suggests that the behavior of endothelial cells is under a specific regulatory regime in each layer, although the mechanisms involved remain unknown. In the present study, we aimed to explore the conditions required to form these vessel patterns by conducting simulations using a computational model. We developed a novel model framework describing the collective migration of endothelial cells to represent the angiogenic process and performed a simulation using two-dimensional approximation. The attractive and repulsive guidance of tip cells was incorporated into the model based on the function and distribution of guidance molecules such as VEGF and Unc ligands. It is shown that an appropriate combination of guidance effects reproduces both the parallel straight pattern in the CP and meshwork patterns in the IZ/SVZ. Our model demonstrated how the guidance of the tip cell causes a variety of vessel patterns and predicted how tissue-specific vascular formation was regulated in the early development of neocortical vessels.

6.
Front Neurosci ; 16: 876406, 2022.
Article En | MEDLINE | ID: mdl-35495046

Visualizing the process of neural circuit formation during neurogenesis, using genetically modified animals or somatic transgenesis of exogenous plasmids, has become a key to decipher cortical development and evolution. In contrast to the establishment of transgenic animals, the designing and preparation of genes of interest into plasmids are simple and easy, dispensing with time-consuming germline modifications. These advantages have led to neuron labeling based on somatic transgenesis. In particular, mammalian expression plasmid, CRISPR-Cas9, and DNA transposon systems, have become widely used for neuronal visualization and functional analysis related to lineage labeling during cortical development. In this review, we discuss the advantages and limitations of these recently developed techniques.

8.
Sci Adv ; 7(13)2021 03.
Article En | MEDLINE | ID: mdl-33762331

Polymicrogyria is a common malformation of cortical development whose etiology remains elusive. We conducted whole-exome sequencing for 124 patients with polymicrogyria and identified de novo ATP1A3 variants in eight patients. Mutated ATP1A3 causes functional brain diseases, including alternating hemiplegia of childhood (AHC), rapid-onset dystonia parkinsonism (RDP), and cerebellar ataxia, areflexia, pes cavus, optic nerve atrophy, and sensorineural deafness (CAPOS). However, our patients showed no clinical features of AHC, RDP, or CAPOS and had a completely different phenotype: a severe form of polymicrogyria with epilepsy and developmental delay. Detected variants had different locations in ATP1A3 and different functional properties compared with AHC-, RDP-, or CAPOS-associated variants. In the developing cerebral cortex of mice, radial neuronal migration was impaired in neurons overexpressing the ATP1A3 variant of the most severe patients, suggesting that this variant is involved in cortical malformation pathogenesis. We propose a previously unidentified category of polymicrogyria associated with ATP1A3 abnormalities.

9.
Cell Rep ; 31(5): 107592, 2020 05 05.
Article En | MEDLINE | ID: mdl-32375034

The six-layered neocortex is a shared characteristic of all mammals, but not of non-mammalian species, and its formation requires an inside-out pattern of neuronal migration. The extant reptilian dorsal cortex is thought to represent an ancestral form of the neocortex, although how the reptilian three-layered cortex is formed is poorly understood. Here, we show unique patterns of lamination and neuronal migration in the developing reptilian cortex. While the multipolar-to-bipolar transition of migrating neurons is essential for mammalian cortical development, the reptilian cortex lacks bipolar-shaped migrating neurons, resulting in an outside-in pattern of cortical development. Furthermore, dynamic regulation of Wnt signal strengths contributes to neuronal morphological changes, which is conserved across species. Our data preclude the idea that the six-layered mammalian neocortex emerged by simple addition to the reptilian dorsal cortex but suggest that the acquisition of a novel neuronal morphology based on conserved developmental programs contributed to neocortical evolution.


Biological Evolution , Cell Movement/physiology , Neocortex/metabolism , Neurons/metabolism , Neurons/pathology , Animals , Mammals , Neurogenesis/physiology , Wnt Signaling Pathway/physiology
10.
Front Neuroanat ; 14: 8, 2020.
Article En | MEDLINE | ID: mdl-32265668

Subplate neurons (SpNs) are one of the earliest born and matured neurons in the developing cerebral cortex and play an important role in the early development of the neocortex. It has been known that SpNs have an essential role in thalamocortical axon (TCA) pathfinding and the establishment of the first neural circuit from the thalamus towards cortical layer IV. In addition to this function, it has recently been revealed in mouse corticogenesis that SpNs play an important role in the regulation of radial neuronal migration during the mid-embryonic stage. Moreover, accumulating studies throw light on the possible roles of SpNs in adult brain functions and also their involvement in psychiatric or other neurological disorders. As SpNs are unique to mammals, they may have contributed to the evolution of the mammalian neocortex by efficiently organizing cortical formation during the limited embryonic period of corticogenesis. By increasing our knowledge of the functions of SpNs, we will clarify how SpNs act as an organizer of mammalian neocortical formation.

11.
Science ; 360(6386): 313-317, 2018 04 20.
Article En | MEDLINE | ID: mdl-29674592

The neocortex exhibits a six-layered structure that is formed by radial migration of excitatory neurons, for which the multipolar-to-bipolar transition of immature migrating multipolar neurons is required. Here, we report that subplate neurons, one of the first neuron types born in the neocortex, manage the multipolar-to-bipolar transition of migrating neurons. By histochemical, imaging, and microarray analyses on the mouse embryonic cortex, we found that subplate neurons extend neurites toward the ventricular side of the subplate and form transient glutamatergic synapses on the multipolar neurons just below the subplate. NMDAR (N-methyl-d-aspartate receptor)-mediated synaptic transmission from subplate neurons to multipolar neurons induces the multipolar-to-bipolar transition, leading to a change in migration mode from slow multipolar migration to faster radial glial-guided locomotion. Our data suggested that transient synapses formed on early immature neurons regulate radial migration.


Cell Movement , Neocortex/cytology , Neocortex/embryology , Neurogenesis , Neurons/physiology , Synaptic Transmission , Animals , Cell Communication , Gene Knock-In Techniques , Mice , Neurons/cytology , Neurons/metabolism , Receptors, N-Methyl-D-Aspartate/metabolism , Tetanus Toxin/genetics
12.
Front Neurosci ; 10: 160, 2016.
Article En | MEDLINE | ID: mdl-27147952

[This corrects the article on p. 447 in vol. 9, PMID: 26733777.].

14.
Development ; 143(1): 66-74, 2016 Jan 01.
Article En | MEDLINE | ID: mdl-26732839

The amplification of distinct neural stem/progenitor cell subtypes during embryogenesis is essential for the intricate brain structures present in various vertebrate species. For example, in both mammals and birds, proliferative neuronal progenitors transiently appear on the basal side of the ventricular zone of the telencephalon (basal progenitors), where they contribute to the enlargement of the neocortex and its homologous structures. In placental mammals, this proliferative cell population can be subdivided into several groups that include Tbr2(+) intermediate progenitors and basal radial glial cells (bRGs). Here, we report that basal progenitors in the developing avian pallium show unique morphological and molecular characteristics that resemble the characteristics of bRGs, a progenitor population that is abundant in gyrencephalic mammalian neocortex. Manipulation of LGN (Leu-Gly-Asn repeat-enriched protein) and Cdk4/cyclin D1, both essential regulators of neural progenitor dynamics, revealed that basal progenitors and Tbr2(+) cells are distinct cell lineages in the developing avian telencephalon. Furthermore, we identified a small population of subapical mitotic cells in the developing brains of a wide variety of amniotes and amphibians. Our results suggest that unique progenitor subtypes are amplified in mammalian and avian lineages by modifying common mechanisms of neural stem/progenitor regulation during amniote brain evolution.


Basal Ganglia/cytology , Basal Ganglia/embryology , Neocortex/embryology , Neural Stem Cells/cytology , Neurons/cytology , Ambystoma mexicanum , Animals , Cell Lineage/physiology , Cell Proliferation/physiology , Chick Embryo , Cyclin D1/metabolism , Cyclin-Dependent Kinase 4/metabolism , Gene Expression Regulation, Developmental , Mice , Monodelphis/embryology , Neocortex/cytology , Turtles/embryology , Xenopus laevis
15.
Front Neurosci ; 9: 447, 2015.
Article En | MEDLINE | ID: mdl-26733777

Glutamatergic neurons of the mammalian cerebral cortex originate from radial glia (RG) progenitors in the ventricular zone (VZ). During corticogenesis, neuroblasts migrate toward the pial surface using two different migration modes. One is multipolar (MP) migration with random directional movement, and the other is locomotion, which is a unidirectional movement guided by the RG fiber. After reaching their final destination, the neurons finalize their migration by terminal translocation, which is followed by maturation via dendrite extension to initiate synaptogenesis and thereby complete neural circuit formation. This switching of migration modes during cortical development is unique in mammals, which suggests that the RG-guided locomotion mode may contribute to the evolution of the mammalian neocortical 6-layer structure. Many factors have been reported to be involved in the regulation of this radial neuronal migration process. In general, the radial migration can be largely divided into four steps; (1) maintenance and departure from the VZ of neural progenitor cells, (2) MP migration and transition to bipolar cells, (3) RG-guided locomotion, and (4) terminal translocation and dendrite maturation. Among these, many different gene mutations or knockdown effects have resulted in failure of the MP to bipolar transition (step 2), suggesting that it is a critical step, particularly in radial migration. Moreover, this transition occurs at the subplate layer. In this review, we summarize recent advances in our understanding of the molecular mechanisms underlying each of these steps. Finally, we discuss the evolutionary aspects of neuronal migration in corticogenesis.

16.
Cereb Cortex ; 25(3): 806-16, 2015 Mar.
Article En | MEDLINE | ID: mdl-24084125

The zinc finger transcription factor RP58 (also known as ZNF238) regulates neurogenesis of the mouse neocortex and cerebellum (Okado et al. 2009; Xiang et al. 2011; Baubet et al. 2012; Ohtaka-Maruyama et al. 2013), but its mechanism of action remains unclear. In this study, we report a cell-autonomous function for RP58 during the differentiation of embryonic cortical projection neurons via its activities as a transcriptional repressor. Disruption of RP58 expression alters the differentiation of immature neurons and impairs their migration and positioning within the mouse cerebral cortex. Loss of RP58 within the embryonic cortex also leads to elevated mRNA for Rnd2, a member of the Rnd family of atypical RhoA-like GTPase proteins important for cortical neuron migration (Heng et al. 2008). Mechanistically, RP58 represses transcription of Rnd2 via binding to a 3'-regulatory enhancer in a sequence-specific fashion. Using reporter assays, we found that RP58 repression of Rnd2 is competed by proneural basic helix-loop-helix transcriptional activators. Finally, our rescue experiments revealed that negative regulation of Rnd2 by RP58 was important for cortical cell migration in vivo. Taken together, these studies demonstrate that RP58 is a key player in the transcriptional control of cell migration in the developing cerebral cortex.


Cell Movement/genetics , Cerebral Cortex/embryology , Cerebral Cortex/physiology , Neurons/metabolism , Repressor Proteins/genetics , rho GTP-Binding Proteins/genetics , Animals , Cell Proliferation/genetics , Cerebral Cortex/metabolism , Female , Male , Mice , Mice, Knockout
17.
Cell Rep ; 3(2): 458-71, 2013 Feb 21.
Article En | MEDLINE | ID: mdl-23395638

Accumulating evidence suggests that many brain diseases are associated with defects in neuronal migration, suggesting that this step of neurogenesis is critical for brain organization. However, the molecular mechanisms underlying neuronal migration remain largely unknown. Here, we identified the zinc-finger transcriptional repressor RP58 as a key regulator of neuronal migration via multipolar-to-bipolar transition. RP58(-/-) neurons exhibited severe defects in the formation of leading processes and never shifted to the locomotion mode. Cre-mediated deletion of RP58 using in utero electroporation in RP58(flox/flox) mice revealed that RP58 functions in cell-autonomous multipolar-to-bipolar transition, independent of cell-cycle exit. Finally, we found that RP58 represses Ngn2 transcription to regulate the Ngn2-Rnd2 pathway; Ngn2 knockdown rescued migration defects of the RP58(-/-) neurons. Our findings highlight the critical role of RP58 in multipolar-to-bipolar transition via suppression of the Ngn2-Rnd2 pathway in the developing cerebral cortex.


Cerebral Cortex/growth & development , Neurons/metabolism , Repressor Proteins/metabolism , Animals , Animals, Newborn , Basic Helix-Loop-Helix Transcription Factors/antagonists & inhibitors , Basic Helix-Loop-Helix Transcription Factors/genetics , Basic Helix-Loop-Helix Transcription Factors/metabolism , Cell Movement , Cells, Cultured , Embryo, Mammalian/metabolism , Embryonic Development , Mice , Mice, Inbred C57BL , Nerve Tissue Proteins/antagonists & inhibitors , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Neural Stem Cells/cytology , Neural Stem Cells/metabolism , Neurogenesis , Neurons/cytology , RNA Interference , RNA, Small Interfering/metabolism , Repressor Proteins/antagonists & inhibitors , Repressor Proteins/genetics
18.
EMBO J ; 31(5): 1190-202, 2012 Mar 07.
Article En | MEDLINE | ID: mdl-22234186

Appropriate number of neurons and glial cells is generated from neural stem cells (NSCs) by the regulation of cell cycle exit and subsequent differentiation. Although the regulatory mechanism remains obscure, Id (inhibitor of differentiation) proteins are known to contribute critically to NSC proliferation by controlling cell cycle. Here, we report that a transcriptional factor, RP58, negatively regulates all four Id genes (Id1-Id4) in developing cerebral cortex. Consistently, Rp58 knockout (KO) mice demonstrated enhanced astrogenesis accompanied with an excess of NSCs. These phenotypes were mimicked by the overexpression of all Id genes in wild-type cortical progenitors. Furthermore, Rp58 KO phenotypes were rescued by the knockdown of all Id genes in mutant cortical progenitors but not by the knockdown of each single Id gene. Finally, we determined p57 as an effector gene of RP58-Id-mediated cell fate control. These findings establish RP58 as a novel key regulator that controls the self-renewal and differentiation of NSCs and restriction of astrogenesis by repressing all Id genes during corticogenesis.


Astrocytes/cytology , Cell Differentiation , Cerebral Cortex/embryology , Gene Expression Regulation , Inhibitor of Differentiation Proteins/metabolism , Neurons/cytology , Repressor Proteins/metabolism , Animals , Cerebral Cortex/cytology , Gene Expression , Gene Knockdown Techniques , Inhibitor of Differentiation Proteins/genetics , Mice , Mice, Knockout , Repressor Proteins/genetics
19.
Anat Rec (Hoboken) ; 293(10): 1797-804, 2010 Oct.
Article En | MEDLINE | ID: mdl-20652933

Ciliary zonules are responsible for changing the curvature of a lens in the dioptric focus of an eye. Present established theory is based on the relaxation of zonular superficial fasciculi affixed to the capsular surface, thereby inducing the change of anterior- and posterior lens curvature causing spontaneous liquid movement of lens material. To achieve precise focusing at any distance, a more active functional organization should exist. The present studies were performed to determine not only the surface attachment but also the intracapsular affix of zonules on monkey eyes. In addition, the development of focusing in newborn and presbyopia is analyzed. Histology was prepared by conventional and molecular immunofluorescence stainings on the compositions of zonules with fibrillin-1 (FBN 1) and lens capsule with collagen IV (COL IV), and in situ hybridization (ISH) analyses on frozen sections. Superficial circumferential attachments of zonule were found radially oriented between ciliary processes and anterior/posterior lens capsules forming a triangular figure. Two functional intralayer integrations were found above them; anterior-posterior crossed fibers over the equator and radial fibers distributed toward the anterior or posterior polar areas. These fibers were bound tightly to the deep layer connective tissues close to the lens epithelium. Fine zonular fibers were aggregated, gradually forming bundles and bifurcated again on the way to the capsule. The lateral striped staining pattern in bundles suggested their elastic nature. Response of α-helixes of collagen IV immunostaining was more positive on α-1,2,4 than α-3,5,6 on anterior- and posterior lens capsules. Newborn eyes revealed not fascicular but fine membranous zonules on the lens surface and small ciliary processes. ISH analysis revealed high synthetic expression of FBN 1 mRNA in cytoplasm of nonpigmented epithelial cells of ciliary processes. The synthetic expression of FBN 1 declined with aging. According to the mechanism of accommodation, active dynamic movement of anterior or posterior capsules play the main role of changing the lens configuration by two intralayer zonular integrations, including anterior-posterior crossed fibers over the equator and radial fibers toward anterior or posterior polar areas acting with coordinated contraction of circular or longitudinal ciliary muscles. The developmental change on focusing is brought about by synthesis of FBN 1 in the newborn eye.


Ciliary Body/anatomy & histology , Lens Capsule, Crystalline/anatomy & histology , Macaca/physiology , Aging/physiology , Animals , Animals, Newborn , Ciliary Body/metabolism , Collagen Type IV/metabolism , Extracellular Matrix Proteins/genetics , Extracellular Matrix Proteins/metabolism , Fibrillins , Gene Expression , In Situ Hybridization , Lens Capsule, Crystalline/metabolism , Microfilament Proteins/genetics , Microfilament Proteins/metabolism , RNA, Messenger/metabolism
20.
Dev Biol ; 331(2): 140-51, 2009 Jul 15.
Article En | MEDLINE | ID: mdl-19409883

The neocortex and the hippocampus comprise several specific layers containing distinct neurons that originate from progenitors at specific development times, under the control of an adequate cell-division patterning mechanism. Although many molecules are known to regulate this cell-division patterning process, its details are not well understood. Here, we show that, in the developing cerebral cortex, the RP58 transcription repressor protein was expressed both in postmitotic glutamatergic projection neurons and in their progenitor cells, but not in GABAergic interneurons. Targeted deletion of the RP58 gene led to dysplasia of the neocortex and of the hippocampus, reduction of the number of mature cortical neurons, and defects of laminar organization, which reflect abnormal neuronal migration within the cortical plate. We demonstrate an impairment of the cell-division patterning during the late embryonic stage and an enhancement of apoptosis of the postmitotic neurons in the RP58-deficient cortex. These results suggest that RP58 controls cell division of progenitor cells and regulates the survival of postmitotic cortical neurons.


Cell Differentiation/physiology , Cerebral Cortex/embryology , Hippocampus/embryology , Neurogenesis/physiology , Neurons/cytology , Repressor Proteins/physiology , Amino Acid Sequence , Animals , Cell Division/physiology , Cell Movement/physiology , Cerebral Cortex/cytology , Cerebral Cortex/physiology , Hippocampus/cytology , Hippocampus/physiology , Mice , Mice, Inbred C57BL , Mice, Knockout , Molecular Sequence Data , Neurons/physiology , Repressor Proteins/genetics , Stem Cells/cytology , Stem Cells/physiology
...