Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Front Cell Dev Biol ; 10: 1070599, 2022.
Article in English | MEDLINE | ID: mdl-36568985

ABSTRACT

The nuclear export factor CRM1-mediated pathway is known to be important for the nuclear egress of progeny parvovirus capsids in the host cells with virus-mediated cell cycle arrest at G2/M. However, it is still unclear whether this is the only pathway by which capsids exit the nucleus. Our studies show that the nuclear egress of DNA-containing full canine parvovirus. capsids was reduced but not fully inhibited when CRM1-mediated nuclear export was prevented by leptomycin B. This suggests that canine parvovirus capsids might use additional routes for nuclear escape. This hypothesis was further supported by our findings that nuclear envelope (NE) permeability was increased at the late stages of infection. Inhibitors of cell cycle regulatory protein cyclin-dependent kinase 1 (Cdk1) and pro-apoptotic caspase 3 prevented the NE leakage. The change in NE permeability could be explained by the regulation of the G2/M checkpoint which is accompanied by early mitotic and apoptotic events. The model of G2/M checkpoint activation was supported by infection-induced nuclear accumulation of cyclin B1 and Cdk1. Both NE permeability and nuclear egress of capsids were reduced by the inhibition of Cdk1. Additional proof of checkpoint function regulation and promotion of apoptotic events was the nucleocytoplasmic redistribution of nuclear transport factors, importins, and Ran, in late infection. Consistent with our findings, post-translational histone acetylation that promotes the regulation of several genes related to cell cycle transition and arrest was detected. In conclusion, the model we propose implies that parvoviral capsid egress partially depends on infection-induced G2/M checkpoint regulation involving early mitotic and apoptotic events.

2.
Cell Mol Gastroenterol Hepatol ; 12(3): 873-889, 2021.
Article in English | MEDLINE | ID: mdl-34058415

ABSTRACT

BACKGROUND & AIMS: Microfold cells (M cells) are immunosurveillance epithelial cells located in the Peyer's patches (PPs) in the intestine and are responsible for monitoring and transcytosis of antigens, microorganisms, and pathogens. Mature M cells use the receptor glycoprotein 2 (GP2) to aid in transcytosis. Recent studies have shown transcription factors, Spi-B and SRY-Box Transcription Factor 8 (Sox8). are necessary for M-cell differentiation, but not sufficient. An exhaustive set of factors sufficient for differentiation and development of a mature GP2+ M cell remains elusive. Our aim was to understand the role of polycomb repressive complex 2 (PRC2) as an epigenetic regulator of M-cell development. Estrogen-related-receptor γ (Esrrg), identified as a PRC2-regulated gene, was studied in depth, in addition to its relationship with Spi-B and Sox8. METHODS: Comparative chromatin immunoprecipitation and global run-on sequencing analysis of mouse intestinal organoids were performed in stem condition, enterocyte conditions, and receptor activator of nuclear factor κ B ligand-induced M-cell condition. Esrrg, which was identified as one of the PRC2-regulated transcription factors, was studied in wild-type mice and knocked out in intestinal organoids using guide RNA's. Sox8 null mice were used to study Esrrg and its relation to Sox8. RESULTS: chromatin immunoprecipitation and global run-on sequencing analysis showed 12 novel PRC2 regulated transcription factors, PRC2-regulated Esrrg is a novel M-cell-specific transcription factor acting on a receptor activator of nuclear factor κB ligand-receptor activator of nuclear factor κB-induced nuclear factor-κB pathway, upstream of Sox8, and necessary but not sufficient for a mature M-cell marker of Gp2 expression. CONCLUSIONS: PRC2 regulates a significant set of genes in M cells including Esrrg, which is critical for M-cell development and differentiation. Loss of Esrrg led to an immature M-cell phenotype lacking in Sox8 and Gp2 expression. Transcript profiling: the data have been deposited in the NCBI Gene Expression Omnibus database (GSE157629).


Subject(s)
Epithelial Cells/metabolism , Gene Expression Regulation , Intestinal Mucosa/cytology , Intestinal Mucosa/metabolism , Peyer's Patches/cytology , Peyer's Patches/metabolism , Polycomb Repressive Complex 2/metabolism , Animals , Biomarkers , Cell Differentiation/genetics , Gene Expression Profiling , Intestinal Mucosa/immunology , Mice , NF-kappa B/metabolism , Peyer's Patches/immunology , RANK Ligand/metabolism , Receptor Activator of Nuclear Factor-kappa B/metabolism , Signal Transduction
3.
Cell Mol Gastroenterol Hepatol ; 11(1): 13-32, 2021.
Article in English | MEDLINE | ID: mdl-32745639

ABSTRACT

BACKGROUND & AIMS: Gluten challenge studies are instrumental in understanding the pathophysiology of celiac disease. Our aims in this study were to reveal early gluten-induced transcriptomic changes in duodenal biopsies and to find tools for clinics. METHODS: Duodenal biopsies were collected from 15 celiac disease patients on a strict long-term gluten-free diet (GFD) prior to and post a gluten challenge (PGC) and from 6 healthy control individuals (DC). Biopsy RNA was subjected to genome-wide 3' RNA-Seq. Sequencing data was used to determine the differences between the three groups and was compared to sequencing data from the public repositories. The biopsies underwent morphometric analyses. RESULTS: In DC vs. GFD group comparisons, 167 differentially expressed genes were identified with 117 genes downregulated and 50 genes upregulated. In PGC vs. GFD group comparisons, 417 differentially expressed genes were identified with 195 genes downregulated and 222 genes upregulated. Celiac disease patients on a GFD were not "healthy". In particular, genes encoding proteins for transporting small molecules were expressed less. In addition to the activation of immune response genes, a gluten challenge induced hyperactive intestinal wnt-signaling and consequent immature crypt gene expression resulting in less differentiated epithelium. Biopsy gene expression in response to a gluten challenge correlated with the extent of the histological damage. Regression models using only four gene transcripts described 97.2% of the mucosal morphology and 98.0% of the inflammatory changes observed. CONCLUSIONS: Our gluten challenge trial design provided an opportunity to study the transition from health to disease. The results show that even on a strict GFD, despite being deemed healthy, patients reveal patterns of ongoing disease. Here, a transcriptomic regression model estimating the extent of gluten-induced duodenal mucosal injury is presented.


Subject(s)
Celiac Disease/immunology , Duodenum/pathology , Glutens/immunology , Intestinal Mucosa/pathology , Transcriptome/immunology , Adult , Biopsy , Celiac Disease/diagnosis , Celiac Disease/diet therapy , Celiac Disease/genetics , Datasets as Topic , Diet, Gluten-Free , Duodenum/immunology , Female , Glutens/administration & dosage , Humans , Intestinal Mucosa/immunology , Male , Middle Aged , RNA-Seq , Young Adult
4.
BMC Gastroenterol ; 19(1): 189, 2019 Nov 15.
Article in English | MEDLINE | ID: mdl-31730447

ABSTRACT

BACKGROUND: There is an unmet need for novel treatments, such as drugs or vaccines, adjunctive to or replacing a burdensome life-long gluten-free diet for coeliac disease. The gold standard for successful treatment is a healed small intestinal mucosa, and therefore, the outcome measures in proof-of-concept studies should be based on evaluation of small intestine biopsies. We here evaluated morphometric, immunohistochemical and messenger RNA (mRNA) expression changes in coeliac disease patients challenged with gluten using PAXgene fixed paraffin-embedded biopsies. METHODS: Fifteen coeliac disease patients were challenged with 4 g of gluten per day for 10 weeks and 24 non-coeliac patients served as disease controls. A wide array of histological and immunohistochemical staining and mRNA-based gene expression tests (RT-qPCR and RNAseq) were carried out. RESULTS: Digital quantitative villous height: crypt depth ratio (VH: CrD) measurements revealed significant duodenal mucosal deterioration in all coeliac disease patients on gluten challenge. In contrast, the Marsh-Oberhuber class worsened in only 80% of coeliac patients. Measuring the intraepithelial CD3+ T-lymphocyte and lamina propria CD138+ plasma cell densities simultaneously proved to be a meaningful new measure of inflammation. Stainings for γδ T cells and IgA deposits, where previously frozen samples have been needed, were successful in PAXgene fixed paraffin-embedded samples. Messenger RNA extraction from the same paraffin-embedded biopsy block was successful and allowed large-scale qRT-PCR and RNAseq analyses for gene expression. Molecular morphometry, using the mRNA expression ratio of villous epithelium-specific gene APOA4 to crypt proliferation gene Ki67, showed a similar significant distinction between paired baseline and post-gluten challenge biopsies as quantitative histomorphometry. CONCLUSION: Rigorous digitally measured histologic and molecular markers suitable for gluten challenge studies can be obtained from a single paraffin-embedded biopsy specimen. Molecular morphometry seems to be a promising new tool that can be used in situations where assessing duodenal mucosal health is of paramount importance. In addition, the diagnostically valuable IgA deposits were now stained in paraffin-embedded specimens making them more accessible in routine clinics.


Subject(s)
Biopsy/methods , Celiac Disease/genetics , Celiac Disease/pathology , Duodenum/pathology , Gene Expression , Intestinal Mucosa/pathology , RNA, Messenger/genetics , Adult , Celiac Disease/diet therapy , Celiac Disease/immunology , Duodenum/immunology , Fixatives , Fluorescent Antibody Technique , Formaldehyde , Glutens/immunology , Humans , Intestinal Mucosa/immunology , Paraffin Embedding , Real-Time Polymerase Chain Reaction , Sequence Analysis, RNA , T-Lymphocytes/pathology
5.
Sci Rep ; 9(1): 3562, 2019 03 05.
Article in English | MEDLINE | ID: mdl-30837492

ABSTRACT

Hepatocyte-like cells (HLCs) derived from induced pluripotent stem cells (iPSCs) provide a renewable source of cells for drug discovery, disease modelling and cell-based therapies. Here, by using GRO-Seq we provide the first genome-wide analysis of the nascent RNAs in iPSCs, HLCs and primary hepatocytes to extend our understanding of the transcriptional changes occurring during hepatic differentiation process. We demonstrate that a large fraction of hepatocyte-specific genes are regulated at transcriptional level and identify hundreds of differentially expressed non-coding RNAs (ncRNAs), including primary miRNAs (pri-miRNAs) and long non-coding RNAs (lncRNAs). Differentiation induced alternative transcription start site (TSS) usage between the cell types as evidenced for miR-221/222 and miR-3613/15a/16-1 clusters. We demonstrate that lncRNAs and coding genes are tightly co-expressed and could thus be co-regulated. Finally, we identified sets of transcriptional regulators that might drive transcriptional changes during hepatocyte differentiation. These included RARG, E2F1, SP1 and FOXH1, which were associated with the down-regulated transcripts, and hepatocyte-specific TFs such as FOXA1, FOXA2, HNF1B, HNF4A and CEBPA, as well as RXR, PPAR, AP-1, JUNB, JUND and BATF, which were associated with up-regulated transcripts. In summary, this study clarifies the role of regulatory ncRNAs and TFs in differentiation of HLCs from iPSCs.


Subject(s)
Cellular Reprogramming/genetics , Hepatocytes/cytology , Induced Pluripotent Stem Cells/cytology , Transcriptome , Humans , Induced Pluripotent Stem Cells/metabolism , MicroRNAs/genetics , RNA, Long Noncoding/genetics
6.
J Clin Gastroenterol ; 53(7): 507-513, 2019 08.
Article in English | MEDLINE | ID: mdl-29505551

ABSTRACT

GOALS: The aim of this study was to investigate the role of dietary factors, distinct small-bowel mucosal immune cell types, and epithelial integrity in the perpetuation of gastrointestinal symptoms in treated celiac disease patients. BACKGROUND: For unexplained reasons, many celiac disease patients suffer from persistent symptoms, despite a strict gluten-free diet (GFD) and recovered intestinal mucosa. STUDY: We compared clinical and serological data and mucosal recovery in 22 asymptomatic and 25 symptomatic celiac patients on a long-term GFD. The density of CD3 and γδ intraepithelial lymphocytes (IELs), CD25 and FOXP3 regulatory T cells, and CD117 mast cells, and the expression of tight junction proteins claudin-3 and occludin, heat shock protein 60, interleukin 15, and Toll-like receptor 2 and 4 were evaluated in duodenal biopsies. RESULTS: All subjects kept a strict GFD and had negative celiac autoantibodies and recovered mucosal morphology. The asymptomatic patients had higher mean fiber intake (20.2 vs. 15.2 g/d, P=0.028) and density of CD3 IELs (59.3 vs. 45.0 cell/mm, P=0.045) than those with persistent symptoms. There was a similar but nonsignificant trend in γδ IELs (17.9 vs. 13.5, P=0.149). There were no differences between the groups in other parameters measured. CONCLUSIONS: Low fiber intake may predispose patients to persistent symptoms in celiac disease. There were no differences between the groups in the markers of innate immunity, epithelial stress or epithelial integrity. A higher number of IELs in asymptomatic subjects may indicate that the association between symptoms and mucosal inflammation is more complicated than previously thought.


Subject(s)
Celiac Disease/physiopathology , Diet, Gluten-Free , Gastrointestinal Diseases/epidemiology , Intestinal Mucosa/immunology , Adult , Aged , Celiac Disease/diet therapy , Celiac Disease/immunology , Female , Gastrointestinal Diseases/etiology , Humans , Immunity, Mucosal/immunology , Male , Middle Aged , Young Adult
7.
Stem Cells ; 35(2): 445-457, 2017 02.
Article in English | MEDLINE | ID: mdl-27570105

ABSTRACT

Canonical Wnt/ß-catenin signaling regulates the homeostasis of intestinal epithelium by controlling the balance between intestinal stem cell self-renewal and differentiation but epigenetic mechanisms enacting the process are not known. We hypothesized that epigenetic regulator, Polycomb Repressive Complex-2 (PRC2), is involved in Wnt-mediated epithelial homeostasis on the crypt-villus axis and aberrancies therein are implicated both in celiac disease and in intestinal malignancies. We found that PRC2 establishes repressive crypt and villus specific trimethylation of histone H3 lysine 27 (H3K27me3) signature on genes responsible for, for example, nutrient transport and cell killing in crypts and, for example, proliferation and differentiation in mature villi, suggesting that PRC2 facilitates the Wnt-governed intestinal homeostasis. When celiac patients are on gluten-containing diet PRC2 is out-of-bounds active and consequently its target genes were found affected in intestinal epithelium. Significant set of effective intestinal PRC2 targets are also differentially expressed in colorectal adenoma and carcinomas. Our results suggest that PRC2 gives rise and maintains polar crypt and villus specific H3K27me3 signatures. As H3K27me3 is a mark enriched in developmentally important genes, identified intestinal PRC2 targets are possibly imperative drivers for enterocyte differentiation and intestinal stem cell maintenance downstream to Wnt-signaling. Our work also elucidates the mechanism sustaining the crypt hyperplasia in celiac disease and suggest that PRC2-dependent fostering of epithelial stemness is a common attribute in intestinal diseases in which epithelial hyperplasia or neoplasia prevails. Finally, this work demonstrates that in intestine PRC2 represses genes having both pro-stemness and pro-differentiation functions, fact need to be considered when designing epigenetic therapies including PRC2 as a drug target. Stem Cells 2017;35:445-457.


Subject(s)
Homeostasis , Intestinal Mucosa/pathology , Intestinal Neoplasms/pathology , Polycomb Repressive Complex 2/metabolism , Stem Cells/pathology , Wnt Signaling Pathway , Animals , Celiac Disease/pathology , Cell Differentiation , Cell Proliferation , Enterocytes/pathology , Gene Expression Regulation, Neoplastic , Glutens , Histones/metabolism , Humans , Hyperplasia , Intestinal Neoplasms/genetics , Lysine/metabolism , Methylation , Mice, Inbred C57BL , Models, Biological , Stem Cell Niche , Stem Cells/metabolism
8.
Genome Res ; 26(11): 1468-1477, 2016 11.
Article in English | MEDLINE | ID: mdl-27620872

ABSTRACT

Approximately 20%-25% of childhood acute lymphoblastic leukemias carry the ETV6-RUNX1 (E/R) fusion gene, a fusion of two central hematopoietic transcription factors, ETV6 (TEL) and RUNX1 (AML1). Despite its prevalence, the exact genomic targets of E/R have remained elusive. We evaluated gene loci and enhancers targeted by E/R genome-wide in precursor B acute leukemia cells using global run-on sequencing (GRO-seq). We show that expression of the E/R fusion leads to widespread repression of RUNX1 motif-containing enhancers at its target gene loci. Moreover, multiple super-enhancers from the CD19+/CD20+-lineage were repressed, implicating a role in impediment of lineage commitment. In effect, the expression of several genes involved in B cell signaling and adhesion was down-regulated, and the repression depended on the wild-type DNA-binding Runt domain of RUNX1. We also identified a number of E/R-regulated annotated and de novo noncoding genes. The results provide a comprehensive genome-wide mapping between E/R-regulated key regulatory elements and genes in precursor B cell leukemia that disrupt normal B lymphopoiesis.


Subject(s)
Core Binding Factor Alpha 2 Subunit/genetics , Genetic Loci , Oncogene Proteins, Fusion/genetics , Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics , Cell Line, Tumor , Core Binding Factor Alpha 2 Subunit/chemistry , Core Binding Factor Alpha 2 Subunit/metabolism , Enhancer Elements, Genetic , Gene Expression Regulation, Neoplastic , Genome, Human , Humans , Oncogene Proteins, Fusion/chemistry , Oncogene Proteins, Fusion/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism
9.
J Virol ; 90(8): 4059-4066, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26842481

ABSTRACT

UNLABELLED: The association of host histones with parvoviral DNA is poorly understood. We analyzed the chromatinization and histone acetylation of canine parvovirus DNA during infection by confocal imaging andin situproximity ligation assay combined with chromatin immunoprecipitation and high-throughput sequencing. We found that during late infection, parvovirus replication bodies were rich in histones bearing modifications characteristic of transcriptionally active chromatin, i.e., histone H3 lysine 27 acetylation (H3K27ac). H3K27ac, in particular, was located in close proximity to the viral DNA-binding protein NS1. Importantly, our results show for the first time that in the chromatinized parvoviral genome, the two viral promoters in particular were rich in H3K27ac. Histone acetyltransferase (HAT) inhibitors efficiently interfered with the expression of viral proteins and infection progress. Altogether, our data suggest that the acetylation of histones on parvoviral DNA is essential for viral gene expression and the completion of the viral life cycle. IMPORTANCE: Viral DNA introduced into cell nuclei is exposed to cellular responses to foreign DNA, including chromatinization and epigenetic silencing, both of which determine the outcome of infection. How the incoming parvovirus resists cellular epigenetic downregulation of its genes is not understood. Here, the critical role of epigenetic modifications in the regulation of parvovirus infection was demonstrated. We showed for the first time that a successful parvovirus infection is characterized by the deposition of nucleosomes with active histone acetylation on the viral promoter areas. The results provide new insights into the regulation of parvoviral gene expression, which is an important aspect of the development of parvovirus-based virotherapy.


Subject(s)
Chromatin/virology , Genome, Viral , Histones/metabolism , Parvoviridae Infections/virology , Parvovirus, Canine/genetics , Promoter Regions, Genetic , Acetylation , Animals , Cats , Cell Line , DNA, Viral/metabolism , Epigenesis, Genetic , Gene Expression Regulation, Viral , Lysine/metabolism , Microscopy, Confocal , Parvovirus, Canine/metabolism , Virus Integration
10.
J Clin Immunol ; 33(1): 134-42, 2013 Jan.
Article in English | MEDLINE | ID: mdl-22878839

ABSTRACT

PURPOSE: Celiac disease is an autoimmune-mediated enteropathy characterized by adaptive and innate immune responses to dietary gluten in wheat, rye and barley in genetically susceptible individuals. Gluten-derived gliadin peptides are deamidated by transglutaminase 2 (TG2), leading to an immune response in the small-intestinal mucosa. TG2 inhibitors have therefore been suggested as putative drugs for celiac disease. In this proof-of-concept study we investigated whether two TG2 inhibitors, cell-impermeable R281 and cell-permeable R283, can prevent the toxic effects of gliadin in vitro and ex vivo. METHODS: Intestinal epithelial Caco-2 cells were treated with peptic-tryptic-digested gliadin (PT-gliadin) with or without TG2 inhibitors and thereafter direct toxic effects (transepithelial resistance, cytoskeletal rearrangement, junction protein expression and phoshorylation of extracellular-signal-regulated kinase 1/2) were determined. In an organ culture of celiac-patient-derived small-intestinal biopsies we measured secretion of TG2-autoantibodies into the culture medium and the densities of CD25- and interleukin (IL) 15-positive cells, forkhead box P3 (FOXP3)-positive regulatory T cells (Tregs) and Ki-67-positive proliferating crypt cells. RESULTS: Both TG2 inhibitors evinced protective effects against gliadin-induced detrimental effects in Caco-2 cells but the cell-impermeable R281 seemed slightly more potent. In addition, TG2 inhibitor R281 modified the gluten-induced increase in CD25- and IL15-positive cells, Tregs and crypt cell proliferation, but had no effect on antibody secretion in celiac-patient-derived biopsies. CONCLUSIONS: Our results suggest that TG2 inhibitors are able to reduce certain gliadin-induced effects related to responses in vitro and ex vivo.


Subject(s)
Celiac Disease/enzymology , Celiac Disease/immunology , Down-Regulation/immunology , GTP-Binding Proteins/antagonists & inhibitors , Gliadin/adverse effects , Transglutaminases/antagonists & inhibitors , Caco-2 Cells , Celiac Disease/pathology , Down-Regulation/drug effects , GTP-Binding Proteins/metabolism , Gliadin/antagonists & inhibitors , Glutens/physiology , Humans , Intestinal Mucosa/drug effects , Intestinal Mucosa/enzymology , Intestinal Mucosa/immunology , Organ Culture Techniques , Pilot Projects , Protein Glutamine gamma Glutamyltransferase 2 , Transglutaminases/metabolism , Up-Regulation/drug effects , Up-Regulation/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...