Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 45
Filter
1.
Anal Chim Acta ; 1118: 73-91, 2020 Jun 29.
Article in English | MEDLINE | ID: mdl-32418606

ABSTRACT

Additive manufacturing or three-dimensional (3D)-printing is an emerging technology that has been applied in the development of novel materials and devices for a wide range of applications, including Electrochemistry and Analytical Chemistry areas. This review article focuses on the contributions of 3D-printing technology to the development of electrochemical sensors and complete electrochemical sensing devices. Due to the recent contributions of 3D-printing within this scenario, the aim of this review is to present a guide for new users of 3D-printing technology considering the required features for improved electrochemical sensing using 3D-printed sensors. At the same time, this is a comprehensive review that includes most 3D-printed electrochemical sensors and devices already reported using selective laser melting (SLM) and fused deposition modeling (FDM) 3D-printers. The latter is the most affordable 3D-printing technique and for this reason has been more often applied for the fabrication of electrochemical sensors, also due to commercially-available conductive and non-conductive filaments. Special attention is given to critically discuss the need for the surface treatment of FDM 3D-printed platforms to improve their electrochemical performance. The insertion of biochemical and chemical catalysts on the 3D-printed surfaces are highlighted as well as novel strategies to fabricate filaments containing chemical modifiers within the polymeric matrix. Some examples of complete electrochemical sensing systems obtained by 3D-printing have successfully demonstrated the enormous potential to develop portable devices for on-site applications. The freedom of design enabled by 3D-printing opens many possibilities of forthcoming investigations in the area of analytical electrochemistry.

2.
Materials (Basel) ; 12(19)2019 Sep 27.
Article in English | MEDLINE | ID: mdl-31569620

ABSTRACT

The physical and chemical characterization of the solid-state properties of drugs and excipients is fundamental for planning new formulations and developing new strategies for the treatment of diseases. Techniques such as differential scanning calorimetry, thermogravimetry, X-ray powder diffraction, Fourier transform infrared spectroscopy, and scanning electron microscopy are among the most commonly used techniques for these purposes. Penciclovir and lysine are individually used to treat the herpes virus. As such, the development of a formulation containing both drugs may have therapeutic potential. Solid-state characterization showed that both penciclovir and lysine were crystalline materials with melting points at 278.27 °C and 260.91 °C, respectively. Compatibility studies of penciclovir and lysine indicated a possible interaction between these substances, as evidenced by a single melting point at 253.10 °C. The compatibility of several excipients, including ethylenediaminetetraacetic acid, cetostearyl alcohol, sodium lauryl sulphate, di-tert-butyl methyl phenol, liquid petrolatum, methylparaben, nonionic wax, paraffin, propylene glycol, and propylparaben, was evaluated in ternary (penciclovir-lysine-excipient) mixtures (1:1:1, w/w/w) to determine the optimal formulation. The developed formulation was stable under accelerated and ambient conditions, which demonstrated that the interaction between penciclovir and lysine was suitable for the development of a formulation containing both drugs.

3.
J Phys Chem A ; 123(40): 8583-8594, 2019 Oct 10.
Article in English | MEDLINE | ID: mdl-31517493

ABSTRACT

This study expands the knowledge on the conformational preference of 1,3-amino alcohols in the gas phase and in solution. By employing Fourier transform infrared spectroscopy, nuclear magnetic resonance (NMR) spectroscopy, density functional theory (DFT) calculations, quantum theory of atoms in molecules (QTAIM), natural bond orbital (NBO) analysis, and molecular dynamics (MD), the compounds 3-aminopropan-1-ol (1), 3-methylaminopropan-1-ol (2), and 3-dimethylaminopropan-1-ol (3) are evaluated. The results show that the most stable conformation of each compound in the gas phase and in nonpolar solvents exhibited an O-H···N intramolecular hydrogen bond (IHB). Based on the experimental and theoretical OH-stretching frequencies, the IHB becomes stronger from 1 to 3. In addition, from the experimental NMR J-couplings, the IHB conformers are predominant in nonbasic solvents, representing 70-80% of the conformational equilibrium, while in basic solvents, such conformers only represent 10%. DFT calculations and QTAIM analysis in the gas phase support the occurrence of IHBs in these compounds. The MD simulation indicates that the non-hydrogen-bonded conformers are the lowest energy conformations in the solution because of molecular interactions with the solvent, while they are absent in the implicit solvation model based on density. NBO analysis suggests that methyl groups attached on the nitrogen atom affect the charge transfer energy involved in the IHB. This effect occurs mostly because of a decrease in the s-character of the LPN orbital along with weakening of the charge transfer from LPN to σ*OH, which is caused by an increase in the C-C-N bond angle.

4.
Materials (Basel) ; 12(15)2019 Jul 24.
Article in English | MEDLINE | ID: mdl-31344887

ABSTRACT

Sitagliptin is an inhibitor of the enzyme dipeptidyl peptidase-4, used for the treatment of type 2 diabetes mellitus. The crystal structure of active pharmaceutical solids determines their physical and chemical properties. The polymorphism, solvates and hydrates can influence the free energy, thermodynamic parameters, solubility, solid-state stability, processability and dissolution rate, besides directly affecting the bioavailability. Thus, the physicochemical characterization of an active pharmaceutical ingredient is required to guarantee the rational development of new dosage forms. In this context, we describe herein the solid-state characterization of three crystalline forms of sitagliptin: sitagliptin phosphate monohydrate, sitagliptin phosphate anhydrous and sitagliptin base form. The investigation was carried out using differential scanning calorimetry (DSC), thermogravimetry (TG)/derivative thermogravimetry (DTG), spectroscopic techniques, X-ray powder diffraction (XRPD) and morphological analysis by scanning electron microscopy. The thermal analysis revealed that during the dehydration of sitagliptin phosphate monohydrate (Tpeak = 134.43 °C, ΔH = -1.15 J g-1) there is a characteristic crystalline transition event, which alters the physicochemical parameters of the drug, such as the melting point and solubility. The crystalline behavior of sitagliptin base form differs from that of sitagliptin phosphate monohydrate and sitagliptin phosphate anhydrous, mainly with regard to the lower temperature of the fusion event. The melting point (Tpeak) values obtained were 120.29 °C for sitagliptin base form, 206.37 °C for sitagliptin phosphate monohydrate and 214.92 °C for sitagliptin phosphate anhydrous. In relation to the thermal stability, sitagliptin phosphate monohydrate and sitagliptin phosphate anhydrous showed a slight difference; however, both are more thermostable than the base molecule. Therefore, through this study it was possible to establish the most suitable crystalline form of sitagliptin for the development of a safe, effective and appropriate pharmaceutical dosage form.

5.
Talanta ; 200: 518-525, 2019 Aug 01.
Article in English | MEDLINE | ID: mdl-31036218

ABSTRACT

This paper reports the use of nickel ions supported at activated biochar carbon paste electrode (NiAB-CPME) coupled in a microfluidic thread-based electroanalytical device (µTED) for non-enzymatic glucose determination. Biochar was initially prepared from castor oil cake at 400 °C and activated by HNO3 refluxing. Activation process promoted an increase of functional groups, surface area and porosity in comparison to precursor biochar. Activated biochar (AB) has shown an excellent performance to spontaneous preconcentration of Ni(II) ions. In alkaline conditions a stable voltammetric profile associated to Ni(OH)2/NiOOH redox pair was verified and a significant catalytic effect was observed in presence of glucose which was used for its monitoring. Microfluidic device was assembled at a plastic platform printed using 3D printer being easy to construction using low cost materials. Non-enzymatic amperometric glucose sensor coupled in µTED showed a good repeatability of 3.84% for successive injections of glucose (n = 10), a constant flow rate of 1.11 µL s-1 and an analytical frequency of 61 injections per hour. A linear dynamic range (LDR) from 5.0 to 100.0 µmol L-1, limit of detection (LOD) of 0.137 µmol L-1 and limit of quantification (LOQ) 0.457 µmol L-1 glucose were obtained. The proposed device was applied to glucose determination in real biological samples of human saliva and blood serum. Finally, the method was considered a green analytical procedure with Eco-Scale score of 81.

6.
J AOAC Int ; 2018 Jul 11.
Article in English | MEDLINE | ID: mdl-29996962

ABSTRACT

Background: The combination of delapril (DEL) and indapamide (IND) may be regarded as an optimal drug treatment for hypertensive patients. However, there is no published study concerning the suitable stability conditions and evaluation of drugs in the raw material and commercial product. Objective: The aim of the present study was to develop an innovative, high-throughput, and stability-indicating LC method for the simultaneous analysis of DEL and IND in combined dosage form. Methods: Analyses were performed using a core-shell C18 column (100 mm × 4.6 mm id, 2.6 µm) at 45°C using isocratic elution for the mobile phase composed of triethylamine solution (0.3%, pH 5.0)-acetonitrile-methanol (58 + 35 + 7, v/v/v). The separation was obtained within 3.5 min at a flow rate of 1.0 mL/min and UV detection set at 213 nm. Results: The specificity and stability-indicating capability of the method were proven through degradation studies, which also showed that there is no interference of the formulation excipients, showing that the peak is free from any co-eluting peak. Conclusions: The method showed adequate precision, with relative standard deviation values lower than 1.85%. Excellent values of accuracy were obtained, with a mean value of 98.64% for IND and 98.65% for DEL. Experimental design was used during validation to calculate and prove the method robustness. Highlights: The proposed LC method was successfully validated according to International Conference on Harmonisation requirements and applied for the simultaneous determination of DEL and IND in tablets, presenting suitability for stability studies and contributing to improve the QC of pharmaceuticals.

7.
Phys Chem Chem Phys ; 19(25): 16904-16913, 2017 Jun 28.
Article in English | MEDLINE | ID: mdl-28628184

ABSTRACT

Intramolecular hydrogen bonding (IAHB) is one of the most important intramolecular interactions and a critical element in adopted molecular arrangements. Moreover, slight substitution in a molecule can affect its strength to a great extent. It is well established that alkyl groups play a positive role in IAHB strength. However, the effects that drive it are specific to each system. To investigate the influence of IAHB and its strength dependency on different acyclic compounds, the conformational preferences of propane-1,3-diol, 3-methoxypropan-1-ol, 3-ethoxypropan-1-ol, 3-isopropoxypropan-1-ol, 3-(tert-butoxy)propan-1-ol, butane-1,3-diol, 3-methoxybutan-1-ol, 3-methylbutane-1-diol, and 3-methoxy-3-methylbutan-1-ol were evaluated experimentally using infrared spectroscopy theoretically supported by topological and natural bond orbital analyses. The most stable conformation of each compound exhibited IAHB and these conformers are more populated in the equilibrium for all studied compounds. Experimental infrared and topological data suggest that the strength of IAHB increases for each methyl group addition. NBO analyses indicate that methyl groups in different positions related to an OH moiety affect the charge transfer energy involved in intramolecular hydrogen bonding. This occurs mostly due to an increase in the spn-hybridized lone pair (LP1O) contribution to the charge transfer , which is a result of changes in s-character and orbital energy caused by geometrical rearrangements, rehybridization, and/or electronic effects.

8.
PLoS One ; 12(1): e0169636, 2017.
Article in English | MEDLINE | ID: mdl-28056082

ABSTRACT

The conservation of many endangered taxa relies on hybrid identification, and when hybrids become morphologically indistinguishable from the parental species, the use of molecular markers can assign individual admixture levels. Here, we present the puzzling case of the extinct in the wild Alagoas Curassow (Pauxi mitu), whose captive population descends from only three individuals. Hybridization with the Razor-billed Curassow (P. tuberosa) began more than eight generations ago, and admixture uncertainty affects the whole population. We applied an analysis framework that combined morphological diagnostic traits, Bayesian clustering analyses using 14 microsatellite loci, and mtDNA haplotypes to assess the ancestry of all individuals that were alive from 2008 to 2012. Simulated data revealed that our microsatellites could accurately assign an individual a hybrid origin until the second backcross generation, which permitted us to identify a pure group among the older, but still reproductive animals. No wild species has ever survived such a severe bottleneck, followed by hybridization, and studying the recovery capability of the selected pure Alagoas Curassow group might provide valuable insights into biological conservation theory.


Subject(s)
Galliformes/genetics , Microsatellite Repeats/genetics , Animals , Bayes Theorem , DNA, Mitochondrial/genetics , Galliformes/classification , Genetic Variation/genetics , Genotype , Haplotypes/genetics , Pedigree
9.
Zoo Biol ; 35(4): 313-8, 2016 07.
Article in English | MEDLINE | ID: mdl-27232628

ABSTRACT

The survival of a number of birds rely on captive breeding and reintroduction into the wild, but captive populations are often small and can be exposed to the negative effects of inbreeding and genetic drift. Then, managers are concerned not only with producing as much offspring as possible, but also with the retention of the maximum genetic variability within and between populations. The Black-fronted Piping Guan, Aburria jacutinga, is an endangered cracid endemic to the Atlantic Forest of southeastern South America. Because of its conservation status and functional importance, a captive breeding program started independently, mainly in three aviaries, in the decade of 1980. Although they have supplied animals for reintroductions, genetic variability aspects have never been considered. Here we addressed levels of genetic variability within and between these aviaries. Bayesian clustering analyses revealed two lineages. Inbreeding was not detected, although we found evidences for a recent bottleneck in one of the aviaries. Then, our main management recommendations are: i) reintroducing the species in areas where it has been extinct is more prudent than supplementing natural populations, as it could involve risks of disrupting local adaptive complexes; ii) as far as inbreeding can be avoided, the captive groups should be managed separately to minimize adaptation to captivity; iii) crossbreedings in pre-release generations could improve reintroduction success; and iv) a studbook should be implemented. As populations of Black-fronted Piping Guan from conservation units are progressively declining, these captive genetic repositories may gain importance in a near future. Zoo Biol. 35:313-318, 2016. © 2016 Wiley Periodicals, Inc.


Subject(s)
Animals, Zoo , Breeding , Conservation of Natural Resources/methods , Endangered Species , Galliformes/genetics , Genetic Variation , Animals , Forests , Galliformes/physiology
10.
Mater Sci Eng C Mater Biol Appl ; 62: 123-9, 2016 May.
Article in English | MEDLINE | ID: mdl-26952405

ABSTRACT

This work describes the construction and application of carbon paste electrodes modified with biochar and antimony microparticles (SbBCPE) for voltammetric determination of paraquat using a simple and sensitive procedure based on voltammetric stripping analysis. Some parameters such as amount of biochar and antimony used in the composition of the carbon paste and instrumental parameters were examined in detail. Under optimized conditions, an analytical curve was obtained for paraquat determination employing SbBCPE, which showed a linear response ranging from 0.2 to 2.9 µmol L(-1), with limit of detection and quantification of 34 nmol L(-1) and 113 nmol L(-1), respectively, after paraquat pre-concentration of 120 s. The repeatability study presented a RSD=2.0% for 10 consecutive measurements using the same electrode surface and the reproducibility study showed a RSD=2.7% for measurements with 10 different electrode surfaces. The proposed sensor was successfully applied for paraquat determination in tap water and citric fruit juice spiked samples and good recoveries were obtained without any sample pre-treatment, showing its promising analytical performance.


Subject(s)
Antimony/chemistry , Charcoal/chemistry , Electrochemical Techniques , Paraquat/analysis , Beverages/analysis , Electrodes , Fresh Water/chemistry , Limit of Detection , Reproducibility of Results
11.
Nat Prod Res ; 27(18): 1677-81, 2013.
Article in English | MEDLINE | ID: mdl-23387288

ABSTRACT

The cytotoxic activity of crude extracts and their fractions from leaves and roots of G. pohliana was assessed against nine human cancer cell lines: melanoma (UACC-62), breast (MCF-7), breast expressing the multidrug resistance phenotype (NCI-ADR), lung (NCI-460), prostate (PCO-3), kidney (786-0), ovarian (OVCAR), colon (HT-29) and leukaemia (K-562). The hexane fraction from leaves (HL) and ethyl acetate (EAR), chloroform (CR) and hydromethanolic (HMR) fractions from roots were the most active fractions against K-562 with GI50 values being lower than 1 µg mL⁻¹. Also, CR and HMR fractions were active against UACC-62 cell line in the same order of magnitude. The phytochemical study of the CR fraction allowed identifying the known iridoids secoxyloganin, sweroside and loganin.


Subject(s)
Antineoplastic Agents, Phytogenic/chemistry , Antineoplastic Agents, Phytogenic/pharmacology , Plant Extracts/chemistry , Plant Extracts/pharmacology , Rubiaceae/chemistry , Cell Line, Tumor , HT29 Cells , Humans , Iridoid Glucosides/chemistry , Iridoid Glucosides/pharmacology , Iridoids/chemistry , Iridoids/pharmacology , Plant Leaves/chemistry , Plant Roots/chemistry
12.
Pharm Dev Technol ; 18(2): 525-34, 2013.
Article in English | MEDLINE | ID: mdl-23033850

ABSTRACT

The present study reports the solid-state properties of Fluvastatin sodium salt crystallized from different solvents for comparison with crystalline forms of the commercially available raw material and United States Pharmacopeia (USP) reference standard. Fluvastatin (FLV) samples were characterized by several techniques; such as X-ray powder diffractometry, differential scanning calorimetry, thermogravimetry, liquid and solid-state nuclear magnetic resonance spectroscopy, diffuse reflectance infrared Fourier transform spectroscopy, and scanning electron microscopy. In addition, intrinsic dissolution rate (IDR) of samples was performed in order to study the influence of crystalline form and other factors on rate and extent of dissolution. Three different forms were found. The commercial raw material and Fluvastatin-Acetonitrile (ACN) were identified as "form I" hydrate, the USP reference standard as "form II" hydrate and an ethanol solvate which presented a mixture of phases. Form I, with water content of 4%, was identified as monohydrate.


Subject(s)
Fatty Acids, Monounsaturated/chemistry , Indoles/chemistry , Calorimetry, Differential Scanning/methods , Crystallization/methods , Fluvastatin , Magnetic Resonance Spectroscopy/methods , Microscopy, Electron, Scanning/methods , Solubility , Solvents/chemistry , Spectroscopy, Fourier Transform Infrared/methods , Thermogravimetry/methods , X-Ray Diffraction/methods
13.
J Int Soc Sports Nutr ; 8(1): 17, 2011 Oct 27.
Article in English | MEDLINE | ID: mdl-22032491

ABSTRACT

BACKGROUND: The purpose of the current study was to compare strength and hypertrophy responses to resistance training programs that instituted constant rest intervals (CI) and decreasing rest intervals (DI) between sets over the course of eight weeks by trained men who supplemented with creatine monohydrate (CR). METHODS: Twenty-two recreationally trained men were randomly assigned to a CI group (n = 11; 22.3 ± 1 years; 77.7 ± 5.4 kg; 180 ± 2.2 cm) or a DI group (n = 11; 22 ± 2.5 years; 75.8 ± 4.9 kg; 178.8 ± 3.4 cm). Subjects in both groups supplemented with CR; the only difference between groups was the rest interval instituted between sets; the CI group used 2 minutes rest intervals between sets and exercises for the entire 8-weeks of training, while the DI group started with a 2 minute rest interval the first two weeks; after which the rest interval between sets was decreased 15 seconds per week (i.e. 2 minutes decreasing to 30 seconds between sets). Pre- and post-intervention maximal strength for the free weight back squat and bench press exercises and isokinetic peak torque were assessed for the knee extensors and flexors. Additionally, muscle cross-sectional area (CSA) of the right thigh and upper arm was measured using magnetic resonance imaging. RESULTS: Both groups demonstrated significant increases in back squat and bench press maximal strength, knee extensor and flexor isokinetic peak torque, and upper arm and right thigh CSA from pre- to post-training (p ≤ 0.0001); however, there were no significant differences between groups for any of these variables. The total volume for the bench press and back squat were significantly greater for CI group versus the DI group. CONCLUSIONS: We report that the combination of CR supplementation and resistance training can increase muscular strength, isokinetic peak torque, and muscle CSA, irrespective of the rest interval length between sets. Because the volume of training was greater for the CI group versus the DI group, yet strength gains were similar, the creatine supplementation appeared to bolster adaptations for the DI group, even in the presence of significantly less volume. However, further research is needed with the inclusion of a control group not receiving supplementation combined and resistance training with decreasing rest intervals to further elucidate such hypotheses.

14.
J Sep Sci ; 34(15): 1867-74, 2011 Aug.
Article in English | MEDLINE | ID: mdl-21688392

ABSTRACT

A stability-indicating MEKC method was developed and validated for the analysis of lumiracoxib (LMC) in pharmaceutical formulations using nimesulide as the internal standard (IS). Optimal conditions for the separation of LMC and degradation products were investigated. The method employed 50 mM borate buffer and 50 mM anionic detergent SDS solution at pH 9.0. MEKC method was performed on a fused-silica capillary (50 µm id; effective length, 40 cm) maintained at 30°C. The applied voltage was 20 kV and photodiode array (PDA) detector was set at 208 nm. The method was validated in accordance with the International Conference on Harmonisation requirements. The stability-indicating capability of the method was established by enforced degradation studies combined with peak purity assessment using PDA detection. The degradation products formed under stressed conditions were investigated by LC-ESI-MS and the two degraded products were identified. MEKC method was linear over the concentration range of 5-150 µg/mL (r(2) =0.9999) of LMC. The method was precise, accurate, with LOD and LOQ of 1.34 and 4.48 µg/mL, respectively. The robustness was proved by a fractional factorial design evaluation. The proposed MEKC method was successfully applied for the quantitative analysis of LMC in tablets to support the quality control.


Subject(s)
Chromatography, Micellar Electrokinetic Capillary/methods , Diclofenac/analogs & derivatives , Chemistry, Pharmaceutical , Chromatography, Liquid , Chromatography, Micellar Electrokinetic Capillary/standards , Diclofenac/analysis , Diclofenac/metabolism , Spectrometry, Mass, Electrospray Ionization , Tablets/chemistry
15.
J Sep Sci ; 34(15): 1859-66, 2011 Aug.
Article in English | MEDLINE | ID: mdl-21710580

ABSTRACT

A stability-indicating MEKC method was developed and validated for the simultaneous determination of aliskiren (ALI) and hydrochlorothiazide (HCTZ) in pharmaceutical formulations using ranitidine as an internal standard (IS). Optimal conditions for the separation of ALI, HCTZ and its major impurity chlorothiazide (CTZ), IS and degradation products were investigated. The method employed 47 mM Tris buffer and 47 mM anionic detergent SDS solution at pH 10.2 as the background electrolyte. MEKC method was performed on a fused-silica capillary (40 cm) at 28°C. Applied voltage was 26 kV (positive polarity) and photodiode array (PDA) detector was set at 217 nm. The method was validated in accordance with the ICH requirements. The method was linear over the concentration range of 5-100 and 60-1200 µg/mL for HCTZ and ALI, respectively (r(2) >0.9997). The stability-indicating capability of the method was established by enforced degradation studies combined with peak purity assessment using the PDA detection. Precision and accuracy evaluated by RSD were lower than 2%. The method proved to be robust by a fractional factorial design evaluation. The proposed MEKC method was successfully applied for the quantitative analysis of ALI and HCTZ both individually and in a combined dosage tablet formulation to support the quality control.


Subject(s)
Amides/analysis , Chromatography, Micellar Electrokinetic Capillary/methods , Fumarates/analysis , Hydrochlorothiazide/analysis , Pharmaceutical Preparations/chemistry , Chromatography, Micellar Electrokinetic Capillary/standards , Reproducibility of Results
16.
Spectrochim Acta A Mol Biomol Spectrosc ; 78(5): 1599-605, 2011 May.
Article in English | MEDLINE | ID: mdl-21382745

ABSTRACT

The analysis of concentration effects in the (1)H NMR data of cis-3-aminocyclohexanol (ACOL) showed that its diequatorial conformer changes from 60% at 0.01 mol L(-1) to 70% at 0.40 mol L(-1) in acetone-d(6). A similar increase was also observed for the diequatorial conformer of cis-3-N-methylaminocyclohexanol (MCOL), from 32% (CDCl(3) 0.01 mol L(-1)) to 55% (CDCl(3) 0.40 mol L(-1)). The increase in solvent basicity leads to a large stabilization effect for the diequatorial conformer of both compounds too. For ACOL, it changes from 47% (ΔG(eqeq-axax)=0.06 kcal mol(-1)) in CCl(4) to 93% (ΔG(eqeq-axax)=-1.53 kcal mol(-1)) in DMSO, while for MCOL it goes from 7% (ΔG(eqeq-axax)=1.54 kcal mol(-1)) in CCl(4) to 82% (ΔG(eqeq-axax)=-0.88 kcal mol(-1)) in pyridine-d(6). These results indicate that the intramolecular hydrogen bonds (IAHB) OH⋯N and NH⋯O stabilize the diaxial conformers of these compounds in a non-polar solvent. For cis-3-amino-1-methoxycyclohexane (ACNE) and cis-3-N-methylamino-1-methoxy-cyclohexane (MCNE) no changes were observed in equilibrium with the variation of solvent polarity. These results indicate for the first time that the IAHB NH⋯O is not strong enough to stabilize the diaxial conformer of these compounds and that the conformation equilibria of the cis isomers of compounds ACOL and MCOL are influenced only by the IAHB OH⋯N. Moreover, the presence of a secondary amino group (93% of diaxial conformer in CCl(4)) leads to an IAHB OH⋯N stronger than in primary and tertiary amino-derivatives (53 and 54% of diaxial conformer, respectively) for 1,3-disubstituted cyclohexanes. Values obtained from the theoretical data through the B3LYP functional are in agreement with the experimental results and indicate that the IAHB strength that influences the conformational equilibrium of these compounds is the IAHB OH⋯N. Thus, the IAHB NH⋯O do not stabilize the diaxial conformer of the cis isomer of compounds ACNE and MCNE showing that the diequatorial conformer will always be more stable than the diaxial conformer, independent of concentration or solvent.


Subject(s)
Cyclohexanes/chemistry , Models, Chemical , Molecular Conformation , Hydrogen Bonding , Isomerism , Magnetic Resonance Spectroscopy , Solvents/chemistry , Thermodynamics
17.
J AOAC Int ; 94(6): 1785-90, 2011.
Article in English | MEDLINE | ID: mdl-22320085

ABSTRACT

An HPLC method was developed and validated for the simultaneous determination of buclizine, tryptophan, pyridoxine, and cyanocobalamin in pharmaceutical formulations. The chromatographic separation was carried out on an RP-C18 column using a mobile phase gradient of methanol, 0.015 M phosphate buffer (pH 3.0), and 0.03 M phosphoric acid at a flow rate of 1.0 mL/min and UV detection at 230, 280, and 360 nm, respectively, for buclizine, tryptophan, pyridoxine, and cyanocobalamin. The method validation yielded good results with respect to linearity (r>0.999), specificity, precision, accuracy, and robustness. The RSD values for intraday and interday precision were below 1.82 and 0.63%, respectively, and recoveries ranged from 98.11 to 101.95%. The method was successfully applied for the QC analysis of buclizine, tryptophan, pyridoxine, and cyanocobalamin in tablets and oral suspension.


Subject(s)
Chromatography, High Pressure Liquid/methods , Piperazines/analysis , Tryptophan/analysis , Vitamin B 12/analysis , Vitamin B 6/analysis , Sensitivity and Specificity , Suspensions/chemistry , Tablets/chemistry
18.
J Strength Cond Res ; 24(7): 1843-50, 2010 Jul.
Article in English | MEDLINE | ID: mdl-20543741

ABSTRACT

Most resistance training programs use constant rest period lengths between sets and exercises, but some programs use decreasing rest period lengths as training progresses. The aim of this study was to compare the effect on strength and hypertrophy of 8 weeks of resistance training using constant rest intervals (CIs) and decreasing rest intervals (DIs) between sets and exercises. Twenty young men recreationally trained in strength training were randomly assigned to either a CI or DI training group. During the first 2 weeks of training, 3 sets of 10-12 repetition maximum (RM) with 2-minute rest intervals between sets and exercises were performed by both groups. During the next 6 weeks of training, the CI group trained using 2 minutes between sets and exercises (4 sets of 8-10RM), and the DI group trained with DIs (2 minutes decreasing to 30 seconds) as the 6 weeks of training progressed (4 sets of 8-10RM). Total training volume of the bench press and squat were significantly lower for the DI compared to the CI group (bench press 9.4%, squat 13.9%) and weekly training volume of these same exercises was lower in the DI group from weeks 6 to 8 of training. Strength (1RM) in the bench press and squat, knee extensor and flexor isokinetic measures of peak torque, and muscle cross-sectional area (CSA) using magnetic resonance imaging were assessed pretraining and posttraining. No significant differences (p < or = 0.05) were shown between the CI and DI training protocols for CSA (arm 13.8 vs. 14.5%, thigh 16.6 vs. 16.3%), 1RM (bench press 28 vs. 37%, squat 34 vs. 34%), and isokinetic peak torque. In conclusion, the results indicate that a training protocol with DI is just as effective as a CI protocol over short training periods (6 weeks) for increasing maximal strength and muscle CSA; thus, either type of program can be used over a short training period to cause strength and hypertrophy.


Subject(s)
Muscle Strength/physiology , Muscle, Skeletal/physiology , Resistance Training , Rest/physiology , Humans , Male , Muscle, Skeletal/anatomy & histology , Weight Lifting , Young Adult
19.
J Pharm Biomed Anal ; 51(3): 728-32, 2010 Feb 05.
Article in English | MEDLINE | ID: mdl-19800190

ABSTRACT

A stability-indicating reversed-phase liquid chromatography (LC) method was developed and validated for the determination of lumiracoxib in pharmaceutical formulations. The LC method was carried out on a Synergi fusion C(18) column (150 mmx4.6mm), maintained at 30 degrees C. The mobile phase was composed of phosphoric acid (25 mM; pH 3.0)/acetonitrile (40:60, v/v), run at a flow rate of 1.0mL/min, and detection at 272nm. The chromatographic separation was obtained within 10 min and it was linear in the concentration range of 10-100 microg/mL (r(2)=0.9999). Validation parameters such as the specificity, linearity, precision, accuracy, and robustness were evaluated, giving results within the acceptable range. Stress studies were carried out and no interference of the degradation products was detected. Moreover, the proposed method was successfully applied for the assay of lumiracoxib in pharmaceutical formulations.


Subject(s)
Chemistry, Pharmaceutical/methods , Diclofenac/analogs & derivatives , Chemistry, Pharmaceutical/standards , Chromatography, Liquid/methods , Diclofenac/analysis , Diclofenac/chemistry
20.
Rev Bras Parasitol Vet ; 18(4): 59-62, 2009.
Article in Portuguese | MEDLINE | ID: mdl-20040211

ABSTRACT

This work aims to compare the performance of corrugated paper and "taquaril" bamboo (Phyllostachys sp.) straw traps for collecting (in sampling) Dermanyssus gallinae in a metal cages battery laying hens. The presence of eggs in the two trap models were compared using a Qui-square test and a proportion confidence interval test. Total daily values of mobile instars gathered in each type of trap were compared using the Wilcoxon's test. The amount of traps containing eggs was not different in neither of the traps (p < 0,05). The number of mobile instars sampled at every two days per trap model was different (p

Subject(s)
Acari , Parasitology/methods , Animals
SELECTION OF CITATIONS
SEARCH DETAIL