Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 36
Filter
1.
J Inherit Metab Dis ; 45(4): 819-831, 2022 07.
Article in English | MEDLINE | ID: mdl-35403730

ABSTRACT

Mitochondrial trifunctional protein (MTP) is involved in long-chain fatty acid ß-oxidation (lcFAO). Deficiency of one or more of the enzyme activities as catalyzed by MTP causes generalized MTP deficiency (MTPD), long-chain hydroxyacyl-CoA dehydrogenase deficiency (LCHADD), or long-chain ketoacyl-CoA thiolase deficiency (LCKATD). When genetic variants result in thermo-sensitive enzymes, increased body temperature (e.g. fever) can reduce enzyme activity and be a risk factor for clinical decompensation. This is the first description of five patients with a thermo-sensitive MTP deficiency. Clinical and genetic information was obtained from clinical files. Measurement of LCHAD and LCKAT activities, lcFAO-flux studies and palmitate loading tests were performed in skin fibroblasts cultured at 37°C and 40°C. In all patients (four MTPD, one LCKATD), disease manifested during childhood (manifestation age: 2-10 years) with myopathic symptoms triggered by fever or exercise. In four patients, signs of retinopathy or neuropathy were present. Plasma long-chain acylcarnitines were normal or slightly increased. HADHB variants were identified (at age: 6-18 years) by whole exome sequencing or gene panel analyses. At 37°C, LCHAD and LCKAT activities were mildly impaired and lcFAO-fluxes were normal. Remarkably, enzyme activities and lcFAO-fluxes were markedly diminished at 40°C. Preventive (dietary) measures improved symptoms for most. In conclusion, all patients with thermo-sensitive MTP deficiency had a long diagnostic trajectory and both genetic and enzymatic testing were required for diagnosis. The frequent absence of characteristic acylcarnitine abnormalities poses a risk for a diagnostic delay. Given the positive treatment effects, upfront genetic screening may be beneficial to enhance early recognition.


Subject(s)
Lipid Metabolism, Inborn Errors , Mitochondrial Myopathies , Muscular Diseases , 3-Hydroxyacyl CoA Dehydrogenases , Adolescent , Cardiomyopathies , Child , Child, Preschool , Coenzyme A , Delayed Diagnosis , Fatty Acids/metabolism , Humans , Lipid Metabolism, Inborn Errors/diagnosis , Lipid Metabolism, Inborn Errors/genetics , Lipid Metabolism, Inborn Errors/metabolism , Mitochondrial Myopathies/diagnosis , Mitochondrial Myopathies/genetics , Mitochondrial Trifunctional Protein/deficiency , Muscular Diseases/diagnosis , Muscular Diseases/genetics , Nervous System Diseases , Rhabdomyolysis
2.
Clin Biochem ; 98: 48-53, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34626609

ABSTRACT

OBJECTIVE: Carnitine-acylcarnitine Translocase (CACT) deficiency (OMIM 212138) and carnitine palmitoyl transferase 2 (CPT2) deficiency (OMIM 60065050) are rare inherited disorders of mitochondrial long chain fatty acid oxidation. The aim of our study is to review the clinical, biochemical and molecular characteristics in children diagnosed with CACT and CPT2 deficiencies in Malaysia. DESIGN AND METHODS: This is a retrospective study. We reviewed medical records of six patients diagnosed with CACT and CPT2 deficiencies. They were identified from a selective high-risk screening of 50,579 patients from January 2010 until Jun 2020. RESULTS: All six patients had either elevation of the long chain acylcarnitines and/or an elevated (C16 + C18:1)/C2 acylcarnitine ratio. SLC25A20 gene sequencing of patient 1 and 6 showed a homozygous splice site mutation at c.199-10 T > G in intron 2. Two novel mutations at c.109C > T p. (Arg37*) in exon 2 and at c.706C > T p. (Arg236*) in exon 7 of SLC25A20 gene were found in patient 2. Patient 3 and 4 (siblings) exhibited a compound heterozygous mutation at c.638A > G p. (Asp213Gly) and novel mutation c.1073 T > G p. (Leu358Arg) in exon 4 of CPT2 gene. A significant combined prevalence at 0.01% of CACT and CPT2 deficiencies was found in the symptomatic Malaysian patients. CONCLUSIONS: The use of the (C16 + C18:1)/C2 acylcarnitine ratio in dried blood spot in our experience improves the diagnostic specificity for CACT/CPT2 deficiencies over long chain acylcarnitine (C16 and C18:1) alone. DNA sequencing for both genes aids in confirming the diagnosis.


Subject(s)
Carnitine Acyltransferases/deficiency , Carnitine O-Palmitoyltransferase/deficiency , Carnitine O-Palmitoyltransferase/genetics , Exons , Introns , Lipid Metabolism, Inborn Errors/genetics , Membrane Transport Proteins/genetics , Metabolism, Inborn Errors/genetics , Mutation , RNA Splice Sites , Carnitine Acyltransferases/blood , Carnitine Acyltransferases/genetics , Carnitine O-Palmitoyltransferase/blood , Child , Female , Humans , Lipid Metabolism, Inborn Errors/blood , Malaysia , Male , Metabolism, Inborn Errors/blood , Retrospective Studies
3.
Epilepsia Open ; 5(1): 73-79, 2020 Mar.
Article in English | MEDLINE | ID: mdl-32140645

ABSTRACT

OBJECTIVE: Biochemical assessment is recommended for patients prior to initiating and following a ketogenic diet (KD). There is no published literature regarding current practice in the UK and Ireland. We aimed to explore practice in comparison with international guidelines, determine approximate costs of biochemical testing in KD patients across the UK and Ireland, and promote greater consistency in KD services nationally. METHODS: A survey was designed to determine the biochemical tests requested for patients at baseline, 3, 6, 12, 18, and 24 months + on KD. The survey was circulated to 39 centers across the UK and Ireland. RESULTS: Sixteen centers completed the survey. Full blood count, electrolytes, calcium, liver function tests (LFTs), lipid profile, and vitamin D were requested at all centers at baseline, in keeping with international guidelines. Bicarbonate, total protein, and urinalysis were less consistently requested. Magnesium and zinc were requested by all centers, despite not being specifically recommended for pre-diet evaluation in guidelines. Urea and electrolyte profiles and some LFTs were consistently requested at follow-up, in accordance with guidelines. Other LFTs and renal tests, full blood count, lipid profile, acylcarnitine profile, selenium, vitamin D, and urinalysis were less consistently requested at follow-up. The mean costs of the lowest and highest number of tests requested at baseline in our participating centers were £167.54 and £501.93; the mean costs of the lowest and highest number of tests requested at 3-month follow-up were £19.17 and £450.06. SIGNIFICANCE: Biochemical monitoring of KD patients varies widely across the UK and Ireland and does not fully correspond to international best practice guidelines. With an ongoing drive for cost-effectiveness within health care, further work is needed to streamline practice while ensuring patient safety.

4.
J Inherit Metab Dis ; 42(5): 809-817, 2019 09.
Article in English | MEDLINE | ID: mdl-31177572

ABSTRACT

The first step in branched-chain amino acid (BCAA) catabolism is catalyzed by the two BCAA transferase isoenzymes, cytoplasmic branched-chain amino acid transferase (BCAT) 1, and mitochondrial BCAT2. Defects in the second step of BCAA catabolism cause maple syrup urine disease (MSUD), a condition which has been far more extensively investigated. Here, we studied the consequences of BCAT2 deficiency, an ultra-rare condition in humans. We present genetic, clinical, and functional data in five individuals from four different families with homozygous or compound heterozygous BCAT2 mutations which were all detected following abnormal biochemical profile results or familial mutation segregation studies. We demonstrate that BCAT2 deficiency has a recognizable biochemical profile with raised plasma BCAAs and, in contrast with MSUD, low-normal branched-chain keto acids (BCKAs) with undetectable l-allo-isoleucine. Interestingly, unlike in MSUD, none of the individuals with BCAT2 deficiency developed acute encephalopathy even with exceptionally high BCAA levels. We observed wide-ranging clinical phenotypes in individuals with BCAT2 deficiency. While one adult was apparently asymptomatic, three individuals had presented with developmental delay and autistic features. We show that the biochemical characteristics of BCAT2 deficiency may be amenable to protein-restricted diet and that early treatment may improve outcome in affected individuals. BCAT2 deficiency is an inborn error of BCAA catabolism. At present, it is unclear whether developmental delay and autism are parts of the variable phenotypic spectrum of this condition or coincidental. Further studies will be required to explore this.


Subject(s)
Amino Acid Metabolism, Inborn Errors/diagnosis , Amino Acid Metabolism, Inborn Errors/genetics , Amino Acids, Branched-Chain/blood , Brain/pathology , Mitochondria/pathology , Pregnancy Proteins/deficiency , Transaminases/deficiency , Adolescent , Adult , Brain/diagnostic imaging , Child , Child, Preschool , Female , Homozygote , Humans , Magnetic Resonance Imaging , Male , Minor Histocompatibility Antigens/genetics , Mutation , Phenotype , Pregnancy Proteins/genetics , Transaminases/genetics
5.
J Inherit Metab Dis ; 39(1): 47-58, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26109258

ABSTRACT

Mitochondrial trifunctional protein (MTP) deficiency caused by HADHA or HADHB gene mutations exhibits substantial molecular, biochemical, and clinical heterogeneity and ranks among the more severe fatty acid oxidation (FAO) disorders, without pharmacological treatment. Since bezafibrate has been shown to potentially correct other FAO disorders in patient cells, we analyzed its effects in 26 MTP-deficient patient fibroblasts representing 16 genotypes. Overall, the patient cell lines exhibited variable, complex, biochemical profiles and pharmacological responses. HADHA-deficient fibroblasts showed markedly reduced alpha subunit protein levels together with decreased beta-subunit abundance, exhibited a -86 to -96% defect in LCHAD activity, and produced large amounts of C14 and C16 hydroxyacylcarnitines. In control fibroblasts, exposure to bezafibrate (400 µM for 48 h) increased the abundance of HADHA and HADHB mRNAs, immune-detectable alpha and beta subunit proteins, activities of LCHAD and LCKAT, and stimulated FAO capacities, clearly indicating that MTP is pharmacologically up-regulated by bezafibrate in human fibroblasts. In MTP-deficient patient fibroblasts, which were found markedly FAO-deficient, bezafibrate improved FAO capacities in six of 26 (23%) cases, including three cell lines heterozygous for the common c1528G > C mutation. Altogether, our results strongly suggest that, due to variable effects of HADHA and HADHB mutations on MTP abundance and residual activity, improvement of MTP deficiency in response to bezafibrate was achieved in a subset of responsive genotypes.


Subject(s)
Bezafibrate/pharmacology , Cardiomyopathies/drug therapy , Fibroblasts/drug effects , Hypolipidemic Agents/pharmacology , Lipid Metabolism, Inborn Errors/drug therapy , Mitochondrial Myopathies/drug therapy , Mitochondrial Trifunctional Protein, alpha Subunit/deficiency , Mitochondrial Trifunctional Protein, beta Subunit/deficiency , Mitochondrial Trifunctional Protein/deficiency , Nervous System Diseases/drug therapy , Rhabdomyolysis/drug therapy , Cardiomyopathies/genetics , Cell Line , Genotype , Humans , Lipid Metabolism, Inborn Errors/genetics , Mitochondrial Myopathies/genetics , Mitochondrial Trifunctional Protein/genetics , Mitochondrial Trifunctional Protein, alpha Subunit/genetics , Mitochondrial Trifunctional Protein, beta Subunit/genetics , Mutation/genetics , Nervous System Diseases/genetics , Rhabdomyolysis/genetics
6.
Eur J Pediatr ; 174(12): 1685-8, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26122794

ABSTRACT

Transient 5-oxoprolinuria is a phenomenon that is well recognised in adults. We illustrate an unusual paediatric case of transient 5-oxoprolinuria presenting during an episode of severe sepsis with concomitant paracetamol use. The 15-month-old patient had an extremely high anion gap metabolic acidosis. Adequate resuscitation failed to correct the biochemical disturbance, and high levels of 5-oxoproline were identified. A combination of haemofiltration, replenishment of glutathione stores with N-acetylcysteine and cessation of paracetamol administration resulted in the resolution of the acidosis. Subsequent testing following treatment of the sepsis revealed no ongoing 5-oxoprolinuria. CONCLUSION: Transient 5-oxoprolinuria has been previously reported in the adult population during episodes of severe sepsis and various pharmaceutical interventions. This case illustrates that it is a phenomenon that should be considered in paediatric patients where a very high anion gap metabolic acidosis exists that cannot be explained by the biochemical indices. WHAT IS KNOWN: • 5-oxoprolinuria in the paediatric population is usually secondary to an inborn error of metabolism. • Transient 5-oxoprolinuria is well recognised in adults during episodes of severe glutathione depletion. WHAT IS NEW: • Transient 5-oxoprolinuria is a phenomenon rarely reported in the paediatric population. • It highlights the importance of investigating a high anion gap such that unusual diagnoses are not missed.


Subject(s)
Acetaminophen/adverse effects , Acidosis/chemically induced , Amino Acid Metabolism, Inborn Errors/etiology , Analgesics, Non-Narcotic/adverse effects , Glutathione Synthase/deficiency , Acid-Base Equilibrium , Acidosis/diagnosis , Female , Humans , Infant , Pyrrolidonecarboxylic Acid/blood , Sepsis/drug therapy
7.
Hum Genet ; 134(8): 869-79, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26008905

ABSTRACT

Succinate dehydrogenase (SDH) is a crucial metabolic enzyme complex that is involved in ATP production, playing roles in both the tricarboxylic cycle and the mitochondrial respiratory chain (complex II). Isolated complex II deficiency is one of the rarest oxidative phosphorylation disorders with mutations described in three structural subunits and one of the assembly factors; just one case is attributed to recessively inherited SDHD mutations. We report the pathological, biochemical, histochemical and molecular genetic investigations of a male neonate who had left ventricular hypertrophy detected on antenatal scan and died on day one of life. Subsequent postmortem examination confirmed hypertrophic cardiomyopathy with left ventricular non-compaction. Biochemical analysis of his skeletal muscle biopsy revealed evidence of a severe isolated complex II deficiency and candidate gene sequencing revealed a novel homozygous c.275A>G, p.(Asp92Gly) SDHD mutation which was shown to be recessively inherited through segregation studies. The affected amino acid has been reported as a Dutch founder mutation p.(Asp92Tyr) in families with hereditary head and neck paraganglioma. By introducing both mutations into Saccharomyces cerevisiae, we were able to confirm that the p.(Asp92Gly) mutation causes a more severe oxidative growth phenotype than the p.(Asp92Tyr) mutant, and provides functional evidence to support the pathogenicity of the patient's SDHD mutation. This is only the second case of mitochondrial complex II deficiency due to inherited SDHD mutations and highlights the importance of sequencing all SDH genes in patients with biochemical and histochemical evidence of isolated mitochondrial complex II deficiency.


Subject(s)
Cardiomyopathy, Hypertrophic, Familial/genetics , Genes, Recessive , Heart Defects, Congenital/genetics , Homozygote , Mitochondrial Proteins/genetics , Mutation, Missense , Succinate Dehydrogenase/genetics , Amino Acid Substitution , Cardiomyopathy, Hypertrophic, Familial/enzymology , Citric Acid Cycle/genetics , Heart Defects, Congenital/enzymology , Humans , Infant, Newborn , Male
8.
J Clin Pathol ; 68(6): 410-7, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25878327

ABSTRACT

Metabolic myopathies (MM) are rare inherited primary muscle disorders that are mainly due to abnormalities of muscle energy metabolism resulting in skeletal muscle dysfunction. These diseases include disorders of fatty acid oxidation, glyco(geno)lytic muscle disorders and mitochondrial respiratory chain (MRC) disease. Clinically these disorders present with a range of symptoms including infantile hypotonia, myalgia/exercise tolerance, chronic or acute muscle weakness, cramps/spasms/stiffness or episodic acute rhabdomyolysis. The precipitant may be fasting, infection, general anaesthesia, heat/cold or most commonly, exercise. However, the differential diagnosis includes a wide range of both acquired and inherited conditions and these include exposure to drugs/toxins, inflammatory myopathies, dystrophies and channelopathies. Streamlining of existing diagnostic protocols has now become a realistic prospect given the availability of second-generation sequencing. A diagnostic pathway using a 'rhabdomyolysis' gene panel at an early stage of the diagnostic process is proposed. Following detailed clinical evaluation and first-line investigations, some patients will be identified as candidates for McArdle disease/glycogen storage disease type V or MRC disease and these will be referred directly to the specialised services. However, for the majority of patients, second-line investigation is best undertaken through next-generation sequencing using a 'rhabdomyolysis' gene panel. Following molecular analysis and careful evaluation of the findings, some patients will receive a clear diagnosis. Further functional or specific targeted testing may be required in other patients to evaluate the significance of uncertain/equivocal findings. For patients with no clear diagnosis, further investigations will be required through a specialist centre.


Subject(s)
Metabolism, Inborn Errors/therapy , Muscular Diseases/therapy , Caloric Restriction/methods , Diet, Fat-Restricted/methods , Enzyme Replacement Therapy/methods , Exercise Test/methods , Humans , Metabolism, Inborn Errors/diagnosis , Metabolism, Inborn Errors/etiology , Muscular Diseases/diagnosis , Muscular Diseases/etiology , Riboflavin/therapeutic use
9.
Neuropathol Appl Neurobiol ; 41(2): 201-26, 2015 Feb.
Article in English | MEDLINE | ID: mdl-24750211

ABSTRACT

AIMS: Amyotrophic lateral sclerosis (ALS) and primary lateral sclerosis (PLS) are two syndromic variants within the motor neurone disease spectrum. As PLS and most ALS cases are sporadic (SALS), this limits the availability of cellular models for investigating pathogenic mechanisms and therapeutic targets. The aim of this study was to use gene expression profiling to evaluate fibroblasts as cellular models for SALS and PLS, to establish whether dysregulated biological processes recapitulate those seen in the central nervous system and to elucidate pathways that distinguish the clinically defined variants of SALS and PLS. METHODS: Microarray analysis was performed on fibroblast RNA and differentially expressed genes identified. Genes in enriched biological pathways were validated by quantitative PCR and functional assays performed to establish the effect of altered RNA levels on the cellular processes. RESULTS: Gene expression profiling demonstrated that whilst there were many differentially expressed genes in common between SALS and PLS fibroblasts, there were many more expressed specifically in the SALS fibroblasts, including those involved in RNA processing and the stress response. Functional analysis of the fibroblasts confirmed a significant decrease in miRNA production and a reduced response to hypoxia in SALS fibroblasts. Furthermore, metabolic gene changes seen in SALS, many of which were also evident in PLS fibroblasts, resulted in dysfunctional cellular respiration. CONCLUSIONS: The data demonstrate that fibroblasts can act as cellular models for ALS and PLS, by establishing the transcriptional changes in known pathogenic pathways that confer subsequent functional effects and potentially highlight targets for therapeutic intervention.


Subject(s)
Fibroblasts/metabolism , Fibroblasts/pathology , Gene Expression Profiling/methods , Motor Neuron Disease/genetics , Transcriptome , Adult , Aged , Cell Hypoxia/physiology , Cells, Cultured , Female , Humans , Immunoblotting , Male , MicroRNAs/analysis , Middle Aged , Motor Neuron Disease/metabolism , Motor Neuron Disease/pathology , Oligonucleotide Array Sequence Analysis/methods
10.
Hum Mutat ; 35(1): 86-95, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24123825

ABSTRACT

Multiple acyl-CoA dehydrogenation deficiency is a disorder of fatty acid and amino acid oxidation caused by defects of electron transfer flavoprotein (ETF) or its dehydrogenase (ETFDH). A clear relationship between genotype and phenotype makes genotyping of patients important not only diagnostically but also for prognosis and for assessment of treatment. In the present study, we show that a predicted benign ETFDH missense variation (c.158A>G/p.Lys53Arg) in exon 2 causes exon skipping and degradation of ETFDH protein in patient samples. Using splicing reporter minigenes and RNA pull-down of nuclear proteins, we show that the c.158A>G variation increases the strength of a preexisting exonic splicing silencer (ESS) motif UAGGGA. This ESS motif binds splice inhibitory hnRNP A1, hnRNP A2/B1, and hnRNP H proteins. Binding of these inhibitory proteins prevents binding of the positive splicing regulatory SRSF1 and SRSF5 proteins to nearby and overlapping exonic splicing enhancer elements and this causes exon skipping. We further suggest that binding of hnRNP proteins to UAGGGA is increased by triggering synergistic hnRNP H binding to GGG triplets located upstream and downsteam of the UAGGGA motif. A number of disease-causing exonic elements that induce exon skipping in other genes have a similar architecture as the one in ETFDH exon 2.


Subject(s)
Adenosine/metabolism , Electron-Transferring Flavoproteins/genetics , Electron-Transferring Flavoproteins/metabolism , Guanine/metabolism , Iron-Sulfur Proteins/genetics , Iron-Sulfur Proteins/metabolism , Multiple Acyl Coenzyme A Dehydrogenase Deficiency/genetics , Oxidoreductases Acting on CH-NH Group Donors/genetics , Oxidoreductases Acting on CH-NH Group Donors/metabolism , RNA Splicing , Amino Acid Motifs , Cadaver , Enhancer Elements, Genetic , Exons , Gene Expression Regulation , Genetic Variation , HEK293 Cells , HeLa Cells , Heterogeneous Nuclear Ribonucleoprotein A1 , Heterogeneous-Nuclear Ribonucleoprotein Group A-B/metabolism , Heterogeneous-Nuclear Ribonucleoprotein Group F-H/metabolism , Humans , Infant, Newborn , Multiple Acyl Coenzyme A Dehydrogenase Deficiency/diagnosis , Mutation, Missense , Nuclear Proteins/metabolism , Protein Binding , RNA-Binding Proteins/metabolism , Sequence Analysis, DNA , Serine-Arginine Splicing Factors , Silencer Elements, Transcriptional , Trinucleotide Repeats
SELECTION OF CITATIONS
SEARCH DETAIL