Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
ChemMedChem ; 16(23): 3553-3558, 2021 12 06.
Article in English | MEDLINE | ID: mdl-34459159

ABSTRACT

In the search for a fast contact-killing antimicrobial surface to break the transmission pathway of lethal pathogens, nanostructured copper surfaces were found to exhibit the desired antimicrobial properties. Compared with plain copper, these nanostructured copper surfaces with Cu(OH)2 nano-sword or CuO nano-foam were found to completely eliminate pathogens at a fast rate, including clinically isolated drug resistant species. Additionally these nanostructured copper surfaces demonstrated potential antiviral properties when assessed against bacteriophages, as a viral surrogate, and murine hepatitis virus, a surrogate for SARS-CoV-2. The multiple modes of killing, physical killing and copper ion mediated killing contribute to the superior and fast kinetics of antimicrobial action against common microbes, and ESKAPE pathogens. Prototypes for air and water cleaning with current nanostructured copper surface have also been demonstrated.


Subject(s)
Bacteria/drug effects , Copper/chemistry , Hepatitis Viruses/drug effects , Hydroxides/chemistry , Nanostructures/toxicity , SARS-CoV-2/drug effects , Animals , Anti-Infective Agents/chemistry , Anti-Infective Agents/pharmacology , Copper/pharmacology , Drug Resistance, Bacterial/drug effects , Mice , Microbial Sensitivity Tests , Nanostructures/chemistry , Surface Properties
2.
ACS Appl Bio Mater ; 4(10): 7524-7531, 2021 10 18.
Article in English | MEDLINE | ID: mdl-35006710

ABSTRACT

Much attention has been devoted to the synthesis and antimicrobial studies of nanopatterned surfaces. However, factors contributing to their potential and eventual application, such as large-scale synthesis, material durability, and biocompatibility, are often neglected in such studies. In this paper, the ZnO nanopillar surface is found to be amenable to synthesis in large forms and stable upon exposure to highly accelerated lifetime tests (HALT) without any detrimental effect on its antimicrobial activity. Additionally, the material is effective against clinically isolated pathogens and biocompatible in vivo. These findings illustrate the broad applicability of ZnO nanopillar surfaces in the common equipment used in health-care and consumer industries.


Subject(s)
Anti-Infective Agents , Zinc Oxide , Anti-Bacterial Agents , Disinfection , Zinc Oxide/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL