Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Malar J ; 22(1): 89, 2023 Mar 10.
Article in English | MEDLINE | ID: mdl-36899431

ABSTRACT

BACKGROUND: Thioester-containing protein 1 (TEP1) is a highly polymorphic gene playing an important role in mosquito immunity to parasite development and associated with Anopheles gambiae vectorial competence. Allelic variations in TEP1 could render mosquito either susceptible or resistant to parasite infection. Despite reports of TEP1 genetic variations in An. gambiae, the correlation between TEP1 allelic variants and transmission patterns in malaria endemic settings remains unclear. METHODS: TEP1 allelic variants were characterized by PCR from archived genomic DNA of > 1000 An. gambiae mosquitoes collected at 3 time points between 2009 and 2019 from eastern Gambia, where malaria transmission remains moderately high, and western regions with low transmission. RESULTS: Eight common TEP1 allelic variants were identified at varying frequencies in An. gambiae from both transmission settings. These comprised the wild type TEP1, homozygous susceptible genotype, TEP1s; homozygous resistance genotypes: TEP1rA and TEP1rB, and the heterozygous resistance genotypes: TEP1srA, TEP1srB, TEP1rArB and TEP1srArB. There was no significant disproportionate distribution of the TEP1 alleles by transmission setting and the temporal distribution of alleles was also consistent across the transmission settings. TEP1s was the most common in all vector species in both settings (allele frequencies: East = 21.4-68.4%. West = 23.5-67.2%). In Anopheles arabiensis, the frequency of wild type TEP1 and susceptible TEP1s was significantly higher in low transmission setting than in high transmission setting (TEP1: Z = - 4.831, P < 0.0001; TEP1s: Z = - 2.073, P = 0.038). CONCLUSIONS: The distribution of TEP1 allele variants does not distinctly correlate with malaria endemicity pattern in The Gambia. Further studies are needed to understand the link between genetic variations in vector population and transmission pattern in the study settings. Future studies on the implication for targeting TEP1 gene for vector control strategy such as gene drive systems in this settings is also recommended.


Subject(s)
Anopheles , Malaria , Animals , Alleles , Anopheles/parasitology , Gambia , Mosquito Vectors/genetics , Malaria/parasitology
2.
Sci Rep ; 12(1): 17057, 2022 10 12.
Article in English | MEDLINE | ID: mdl-36224312

ABSTRACT

Malaria remains a major health problem and vector control is an essential approach to decrease its burden, although it is threatened by insecticide resistance. New approaches for vector control are needed. The females of Anopheles gambiae s.l. mate once in their life and in the swarms formed by males. Trapping swarms of Anopheles gambiae s.l. males is a potential new intervention for vector control, alternative to the use of insecticides, as it would disrupt mating . The proof-of-concept pilot study aiming at investigating swarm trapping as a potential vector control intervention, was carried out in 6 villages as in eastern Gambia. Swarms of Anopheles gambiae s.l. were identified and their size, height, and duration determined during the baseline year. Swarm trapping by local volunteers was implemented the following transmission season in 4 villages while the other 2 villages were taken as controls. Entomological outcomes were monitored by Human Landing Catches and Pyrethrum Spray Catches. A cross-sectional survey to determine malaria prevalence was carried out at the peak of the malaria transmission season for two consecutive years. At baseline, 23 swarming sites of Anopheles gambiae s.l. were identified. Before the intervention, mean indoor resting density per house and malaria prevalence were similar between control and intervention villages. Following the intervention, Anopheles gambiae s.l. indoor resting density was 44% lower in intervention than in control villages (adj IRR: 0.0.56; 95% CI 0.47-0.68); the odds of malaria infections were 68% lower in intervention than in control villages (OR: 0.32; 95% CI 0.11-0.97). Swarm trapping seems to be a promising, community-based vector control intervention that could reduce malaria prevalence by reducing vector density. Such results should be further investigated and confirmed by larger cluster-randomized trials.


Subject(s)
Anopheles , Insecticides , Malaria , Animals , Cross-Sectional Studies , Female , Gambia/epidemiology , Humans , Insecticides/pharmacology , Malaria/epidemiology , Malaria/prevention & control , Male , Mosquito Control/methods , Mosquito Vectors , Pilot Projects
3.
Malar J ; 20(1): 316, 2021 Jul 14.
Article in English | MEDLINE | ID: mdl-34261475

ABSTRACT

BACKGROUND: Following agricultural use and large-scale distribution of insecticide-treated nets (ITNs), malaria vector resistance to pyrethroids is widespread in sub-Saharan Africa. Interceptor® G2 is a new dual active ingredient (AI) ITN treated with alpha-cypermethrin and chlorfenapyr for the control of pyrethroid-resistant malaria vectors. In anticipation of these new nets being more widely distributed, testing was conducted to develop a chlorfenapyr susceptibility bioassay protocol and gather susceptibility information. METHODS: Bottle bioassay tests were conducted using five concentrations of chlorfenapyr at 12.5, 25, 50, 100, and 200 µg AI/bottle in 10 countries in sub-Saharan Africa using 13,639 wild-collected Anopheles gambiae sensu lato (s.l.) (56 vector populations per dose) and 4,494 pyrethroid-susceptible insectary mosquitoes from 8 colonized strains. In parallel, susceptibility tests were conducted using a provisional discriminating concentration of 100 µg AI/bottle in 16 countries using 23,422 wild-collected, pyrethroid-resistant An. gambiae s.l. (259 vector populations). Exposure time was 60 min, with mortality recorded at 24, 48 and 72 h after exposure. RESULTS: Median mortality rates (up to 72 h after exposure) of insectary colony mosquitoes was 100% at all five concentrations tested, but the lowest dose to kill all mosquitoes tested was 50 µg AI/bottle. The median 72-h mortality of wild An. gambiae s.l. in 10 countries was 71.5, 90.5, 96.5, 100, and 100% at concentrations of 12.5, 25, 50, 100, and 200 µg AI/bottle, respectively. Log-probit analysis of the five concentrations tested determined that the LC95 of wild An. gambiae s.l. was 67.9 µg AI/bottle (95% CI: 48.8-119.5). The discriminating concentration of 203.8 µg AI/bottle (95% CI: 146-359) was calculated by multiplying the LC95 by three. However, the difference in mortality between 100 and 200 µg AI/bottle was minimal and large-scale testing using 100 µg AI/bottle with wild An. gambiae s.l. in 16 countries showed that this concentration was generally suitable, with a median mortality rate of 100% at 72 h. CONCLUSIONS: This study determined that 100 or 200 µg AI/bottle chlorfenapyr in bottle bioassays are suitable discriminating concentrations for monitoring susceptibility of wild An. gambiae s.l., using mortality recorded up to 72 h. Testing in 16 countries in sub-Saharan Africa demonstrated vector susceptibility to chlorfenapyr, including mosquitoes with multiple resistance mechanisms to pyrethroids.


Subject(s)
Anopheles/drug effects , Insecticide Resistance , Insecticide-Treated Bednets , Insecticides/pharmacology , Pyrethrins/pharmacology , Animals , Dose-Response Relationship, Drug
4.
Parasit Vectors ; 14(1): 320, 2021 Jun 12.
Article in English | MEDLINE | ID: mdl-34118973

ABSTRACT

INTRODUCTION: Longitudinal monitoring of outdoor-biting malaria vector populations is becoming increasingly important in understanding the dynamics of residual malaria transmission. However, the human landing catch (HLC), the gold standard for measuring human biting rates indoors and outdoors, is costly and raises ethical concerns related to increased risk of infectious bites among collectors. Consequently, routine data on outdoor-feeding mosquito populations are usually limited because of the lack of a scalable tool with similar sensitivity to outdoor HLC. METHODOLOGY: The Anopheles trapping sensitivity of four baited proxy outdoor trapping methods-Furvela tent trap (FTT), host decoy trap (HDT), mosquito electrocuting traps (MET) and outdoor CDC light traps (OLT)-was assessed relative to HLC in a 5 × 5 replicated Latin square conducted over 25 nights in two villages of western Kenya. Indoor CDC light trap (ILT) was run in one house in each of the compounds with outdoor traps, while additional non-Latin square indoor and outdoor HLC collections were performed in one of the study villages. RESULTS: The MET, FTT, HDT and OLT sampled approximately 4.67, 7.58, 5.69 and 1.98 times more An. arabiensis compared to HLC, respectively, in Kakola Ombaka. Only FTT was more sensitive relative to HLC in sampling An. funestus in Kakola Ombaka (RR = 5.59, 95% CI 2.49-12.55, P < 0.001) and Masogo (RR = 4.38, 95% CI 1.62-11.80, P = 0.004) and in sampling An. arabiensis in Masogo (RR = 5.37, 95% CI 2.17-13.24, P < 0.001). OLT sampled significantly higher numbers of An. coustani in Kakola Ombaka (RR = 3.03, 95% CI 1.65-5.56, P < 0.001) and Masogo (RR = 2.88, 95% CI 1.15-7.22, P = 0.02) compared to HLC. OLT, HLC and MET sampled mostly An. coustani, FTT had similar proportions of An. funestus and An. arabiensis, while HDT sampled predominantly An. arabiensis in both villages. FTT showed close correlation with ILT in vector abundance for all three species at both collection sites. CONCLUSION: FTT and OLT are simple, easily scalable traps and are potential replacements for HLC in outdoor sampling of Anopheles mosquitoes. However, the FTT closely mirrored indoor CDC light trap in mosquito indices and therefore may be more of an indoor mimic than a true outdoor collection tool. HDT and MET show potential for sampling outdoor host-seeking mosquitoes. However, the traps as currently designed may not be feasible for large-scale, longitudinal entomological monitoring. Therefore, the baited outdoor CDC light trap may be the most appropriate tool currently available for assessment of outdoor-biting and malaria transmission risk.


Subject(s)
Anopheles/parasitology , Malaria/prevention & control , Mosquito Control/instrumentation , Mosquito Control/standards , Animals , Entomology/methods , Feeding Behavior , Female , Humans , Kenya , Male , Mosquito Control/methods , Mosquito Vectors/parasitology , Specimen Handling
5.
Parasit Vectors ; 12(1): 287, 2019 Jun 04.
Article in English | MEDLINE | ID: mdl-31164149

ABSTRACT

BACKGROUND: Vector control activities, namely long-lasting insecticidal nets (LLIN) and indoor residual spraying (IRS), have contributed significantly to the decreasing malaria burden observed in The Gambia since 2008. Nevertheless, insecticide resistance may threaten such success; it is important to regularly assess the susceptibility of local malaria vectors to available insecticides. METHODS: In the transmission seasons of 2016 and 2017, Anopheles gambiae (s.l.) larvae were sampled in or around the nine vector surveillance sentinel sites of the Gambia National Malaria Control Programme (GNMCP) and in a few additional sampling points. Using WHO susceptibility bioassays, female adult mosquitoes were exposed to insecticide-impregnated papers. Molecular identification of sibling species and insecticide resistance molecular markers was done on a subset of 2000 female mosquitoes. RESULTS: A total of 4666 wild-caught female adult mosquitoes were exposed to either permethrin (n = 665), deltamethrin (n = 744), DDT (n = 1021), bendiocarb (n = 990) or pirimiphos-methyl (n = 630) insecticide-impregnated papers and control papers (n = 616). Among the 2000 anophelines, 1511 (80.7%) were Anopheles arabiensis, 204 (10.9%) Anopheles coluzzii, 75 (4%) Anopheles gambiae (s.s.), and 83 (4.4%) An. gambiae (s.s.) and An. coluzzii hybrids. There was a significant variation in the composition and species distribution by regions and year, P = 0.009. Deltamethrin, permethrin and DDT resistance was found in An. arabiensis, especially in the coastal region, and was mediated by Vgsc-1014F/S mutations (odds ratio = 34, P = 0.014). There was suspected resistance to pirimiphos-methyl (actellic 300CS) in the North Bank Region although only one survivor had the Ace-1-119S mutation. CONCLUSIONS: As no confirmed resistance to bendiocarb and actellic 300CS was detected, the national malaria control programme can continue using these insecticides for IRS. Nevertheless, the detection of Ace-1 119S mutation warrants extensive monitoring. The source of insecticide pressure driving insecticide resistance to pyrethroids and DDT detected at the coastal region should be further investigated in order to properly manage the spread of resistance in The Gambia.


Subject(s)
Anopheles , Insecticide Resistance , Insecticides , Animals , Female , Gambia , Larva , Mosquito Vectors , Nitriles , Permethrin , Pyrethrins
6.
Malar J ; 15: 166, 2016 Mar 15.
Article in English | MEDLINE | ID: mdl-26980461

ABSTRACT

BACKGROUND: Malaria hotspots, areas with consistently higher than average transmission, may become increasingly common as malaria declines. This phenomenon, currently observed in The Gambia, may be caused by several factors, including some related to the local vectors, whose contribution is poorly understood. METHODS: Using WHO susceptibility bioassays, insecticide resistance status was determined in vector populations sampled from six pairs of villages across The Gambia, each pair contained a low and high prevalence village. RESULTS: Three vector species were observed (23.5% Anopheles arabiensis, 31.2% Anopheles gambiae, 43.3% Anopheles coluzzii and 2.0% An. coluzzii × An. gambiae hybrids). Even at a fine scale, significant differences in species composition were detected within village pairs. Resistance to both DDT and deltamethrin was more common in An. gambiae, most markedly in the eastern part of The Gambia and partly attributable to differing frequencies of resistance mutations. The Vgsc-1014F target site mutation was strongly associated with both DDT (OR = 256.7, (95% CI 48.6-6374.3, p < 0.001) and deltamethrin survival (OR = 9.14, (95% CI 4.24-21.4, p < 0.001). A second target site mutation, Vgsc-1575Y, which co-occurs with Vgsc-1014F, and a metabolic marker of resistance, Gste2-114T, conferred additional survival benefits to both insecticides. DDT resistance occurred significantly more frequently in villages with high malaria prevalence (p = 0.025) though this did not apply to deltamethrin resistance. CONCLUSION: Whilst causality of relationships requires further investigation, variation in vector species and insecticide resistance in The Gambia is associated with malaria endemicity; with a notably higher prevalence of infection and insecticide resistance in the east of the country. In areas with heterogeneous malaria transmission, the role of the vector should be investigated to guide malaria control interventions.


Subject(s)
Anopheles/drug effects , Anopheles/physiology , Insecticide Resistance , Malaria/epidemiology , Malaria/transmission , Animals , Biological Assay , Cross-Sectional Studies , Female , Gambia/epidemiology , Survival Analysis
7.
Malar J ; 14: 314, 2015 Aug 14.
Article in English | MEDLINE | ID: mdl-26268225

ABSTRACT

BACKGROUND: As indicators of burden of malaria have substantially decreased in The Gambia, reaching a pre-elimination status may be attainable. Achieving this goal requires in-depth understanding of the current burden of Plasmodium falciparum infection. METHODS: A nationwide cross-sectional survey was conducted in 2012 to determine the prevalence of P. falciparum infection, and to describe its heterogeneity and associated risk factors. Finger-prick blood samples were collected for microscopy, species-specific PCR and haemoglobin measurement. RESULTS: A total of 9,094 participants were included and median age was 11.9 years (IQR 5, 28). Overall prevalence of P. falciparum was 16.01 % with marked heterogeneity between sites (4.32-36.75 %) and within villages in each site (1.63-49.13 %). Across all sites, 51.17 % (745/1,456) of infections were asymptomatic and 35.61 % (448/1,258) were sub-microscopic. The odds of P. falciparum infection were higher in older children; 5-15 years (OR = 1.90; 95 % CI 1.60-2.26), adults (OR = 1.48; 95 % CI 1.24-1.78) and participants with moderate anaemia (OR = 1.62; 95 % CI 1.32-1.99). CONCLUSIONS: The current malaria control interventions are not sufficient to interrupt transmission in The Gambia as malaria prevalence is still relatively high in the eastern part of the country. New interventions aiming at interrupting transmission are needed and should be urgently evaluated.


Subject(s)
Malaria, Falciparum/epidemiology , Malaria, Falciparum/transmission , Adolescent , Adult , Child , Child, Preschool , Cross-Sectional Studies , Female , Gambia/epidemiology , Humans , Infant , Infant, Newborn , Malaria, Falciparum/prevention & control , Male , Prevalence , Risk Factors , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...