Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 39
Filter
Add more filters










Publication year range
1.
Crit Rev Food Sci Nutr ; 63(12): 1733-1754, 2023.
Article in English | MEDLINE | ID: mdl-34445909

ABSTRACT

With the fast-global development of packaging techniques, the potential antimicrobial effect of CO2, as a safe, cheap and readily available gas, makes it the integral component for packaging of meat products. The associated spoilage and/or pathogenic bacteria on raw meat may respond in different ways to elevated CO2 concentrations. The growth of some aerobic Gram-negative bacteria such as Pseudomonas spp. is significantly inhibited but some LAB bacteria may be allowed to grow faster and dominate the product. The antimicrobial efficacy of enriched CO2 packaging is attributed to the rate of CO2 solubility in the product which is itself affected by the level of headspace CO2, product pH, temperature and the ratio of headspace gas to product (G:P). This review, first, explores the varied range of beef and sheep meat spoilage and pathogenic bacteria and the intrinsic and extrinsic parameters that may influence the pattern of microbial growth and meat spoilage rate during storage. Then, the antimicrobial mechanism of elevated CO2 packaging will be discussed and the different approaches of achieving enriched CO2 packaging i.e. the traditional technique of flushing a desired gas mixture and/or using the new commercially developed CO2 emitters will then be compared in terms of their strengths, limitations and technical mode of action.


Subject(s)
Anti-Infective Agents , Red Meat , Cattle , Animals , Sheep , Carbon Dioxide/analysis , Food Packaging/methods , Bacteria , Red Meat/microbiology , Meat , Food Microbiology
2.
Meat Sci ; 177: 108508, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33798992

ABSTRACT

The focus of this study was to compare the effectiveness of MALDI-TOF MS and partial 16S rRNA gene sequencing for the identification of bacteria isolated from VP lamb meat stored chilled at 5 °C for 21 days, at the same time gaining insights into bacterial changes over time. The identity of bacterial isolates on non-selective and selective agars was determined by both methods and results compared. Results showed that total bacterial numbers increased over the 21 days (as expected) with Staphylococcus and Pseudomonas (day 0) being replaced by Carnobacterium, Brochothrix and members of the Enterobacteriaceae family by day 21. A high level of agreement (86-100%) for bacterial isolates' identity at genus level was observed between MALDI-TOF MS and partial 16S rRNA gene-based sequencing for isolates where identification was possible. With its cheaper cost and faster turnaround time, once optimized, MALDI-TOF MS could become a useful alternative to 16S rRNA gene-sequencing for the rapid identification of red meat bacterial isolates.


Subject(s)
Bacteria/isolation & purification , Red Meat/microbiology , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/veterinary , Animals , Bacteria/classification , Bacteria/genetics , Food Storage , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Sheep , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods
4.
Front Microbiol ; 11: 592060, 2020.
Article in English | MEDLINE | ID: mdl-33324371

ABSTRACT

Cheese maturation and flavor development results from complex interactions between milk substrates, cheese microbiota and their metabolites. In this study, bacterial 16S rRNA-gene sequencing, untargeted metabolomics (gas chromatography-mass spectrometry) and data integration analyses were used to characterize and differentiate commercial Cheddar cheeses of varying maturity made by the same and different manufacturers. Microbiota and metabolite compositions varied between cheeses of different ages and brands, and could be used to distinguish the cheeses. Individual amino acids and carboxylic acids were positively correlated with the ripening age for some brands. Integration and Random Forest analyses revealed numerous associations between specific bacteria and metabolites including a previously undescribed positive correlation between Thermus and phenylalanine and a negative correlation between Streptococcus and cholesterol. Together these results suggest that multi-omics analyses has the potential to be used for better understanding the relationships between cheese microbiota and metabolites during ripening and for discovering biomarkers for validating cheese age and brand authenticity.

5.
Sci Rep ; 10(1): 3164, 2020 02 21.
Article in English | MEDLINE | ID: mdl-32081987

ABSTRACT

Cheese microbiota and metabolites and their inter-relationships that underpin specific cheese quality attributes remain poorly understood. Here we report that multi-omics and integrative data analysis (multiple co-inertia analysis, MCIA) can be used to gain deeper insights into these relationships and identify microbiota and metabolite fingerprints that could be used to monitor product quality and authenticity. Our study into different brands of artisanal and industrial cheddar cheeses showed that Streptococcus, Lactococcus and Lactobacillus were the dominant taxa with overall microbial community structures differing not only between industrial and artisanal cheeses but also among different cheese brands. Metabolome analysis also revealed qualitative and semi-quantitative differences in metabolites between different cheeses. This also included the presence of two compounds (3-hydroxy propanoic acid and O-methoxycatechol-O-sulphate) in artisanal cheese that have not been previously reported in any type of cheese. Integrative analysis of multi-omics datasets revealed that highly similar cheeses, identical in age and appearance, could be distinctively clustered according to cheese type and brand. Furthermore, the analysis detected strong relationships, some previously unknown, which existed between the cheese microbiota and metabolome, and uncovered specific taxa and metabolites that contributed to these relationships. These results highlight the potential of this approach for identifying product specific microbe/metabolite signatures that could be used to monitor and control cheese quality and product authenticity.


Subject(s)
Cheese/microbiology , Food Analysis , Food Microbiology , Metabolome , Microbiota , Biodiversity , DNA, Bacterial/metabolism , Lactobacillus , Lactococcus , Metabolomics , Metagenomics , Principal Component Analysis , RNA, Ribosomal, 16S/metabolism , Streptococcus
6.
Crit Rev Food Sci Nutr ; 60(1): 33-47, 2020.
Article in English | MEDLINE | ID: mdl-30285475

ABSTRACT

Cheese is a fermented dairy product, harboring diverse microbial communities (microbiota) that change over time and vary depending on the type of cheese and their respective starter and adjunct cultures. These microorganisms play a crucial role in determining the flavor, quality and safety of the final product. Exploring the composition of cheese microbiota and the underlying molecular mechanisms involved in cheese ripening has been the subject of many studies. Recent advances in next generation sequencing (NGS) methods and the development of sophisticated bioinformatics tools have provided deeper insights into the composition and potential functionality of cheese microbiota far beyond the information provided by culture-dependent methods. These advances, which include rRNA gene amplicon sequencing and metagenomics, have been complemented and expanded in recent years by the application of metatranscriptomics, metaproteomics and metabolomics. This paper reviews studies in which application of these meta-omics technologies has led to a better understanding of the microbial composition and functionality of cheese and highlights opportunities by which the integration of outputs from diverse multi-omics analytical platforms (cheesomics) could be used in the future to advance our knowledge of the cheese ripening process and identify biomarkers for predicting cheese flavor, quality, texture and safety, and bioactive metabolites with potential to influence human health.


Subject(s)
Cheese/analysis , Food Microbiology , Microbiota , Cheese/microbiology , Computational Biology , Metagenomics , Taste
7.
J Environ Manage ; 238: 49-58, 2019 May 15.
Article in English | MEDLINE | ID: mdl-30844545

ABSTRACT

Polycyclic aromatic hydrocarbons (PAHs) represent a group of hazardous compounds that are ubiquitous and persistent. The main aim of this study was to investigate the degradation of PAHs in chronically contaminated, aged and weathered soils obtained from a former gas plant of Australia. Biostimulation and bioaugmentation using individual isolates (Rhodococcus sp. (NH2), Achromobacter sp. (NH13), Oerskovia paurometabola (NH11), Pantoea sp. (NH15), Sejongia sp. (NH20), Microbacterium maritypicum (NH30) and Arthrobacter equi (NH21)) and a consortium of these isolates were tested during mesocosm studies. A significant reduction (99%) in PAH concentration was observed in all the treatments. In terms of the abundance of PAH-degrading genes and microbial community structure during PAH degradation, qPCR results revealed that Gram-positive bacteria were dominant over other bacterial communities in all the treatments. 16S sequencing results revealed that the inoculated organisms did not establish themselves during the treatment. However, substantial bacterial community changes during the treatments were observed, suggesting that the natural community exhibited sufficient resilience and diversity to enable an active, but changing degrading community at all stages of the degradation process. Consequently, biostimulation is proposed as the best strategy to remediate PAHs in aged, weathered and chronically contaminated soils.


Subject(s)
Polycyclic Aromatic Hydrocarbons , Soil Pollutants , Australia , Biodegradation, Environmental , Soil , Soil Microbiology
8.
Front Microbiol ; 8: 1599, 2017.
Article in English | MEDLINE | ID: mdl-28878754

ABSTRACT

Marine ecosystems are exposed to a range of human-induced climate stressors, in particular changing carbonate chemistry and elevated sea surface temperatures as a consequence of climate change. More research effort is needed to reduce uncertainties about the effects of global-scale warming and acidification for benthic microbial communities, which drive sedimentary biogeochemical cycles. In this research, mesocosm experiments were set up using muddy and sandy coastal sediments to investigate the independent and interactive effects of elevated carbon dioxide concentrations (750 ppm CO2) and elevated temperature (ambient +4°C) on the abundance of taxonomic and functional microbial genes. Specific quantitative PCR primers were used to target archaeal, bacterial, and cyanobacterial/chloroplast 16S rRNA in both sediment types. Nitrogen cycling genes archaeal and bacterial ammonia monooxygenase (amoA) and bacterial nitrite reductase (nirS) were specifically targeted to identify changes in microbial gene abundance and potential impacts on nitrogen cycling. In muddy sediment, microbial gene abundance, including amoA and nirS genes, increased under elevated temperature and reduced under elevated CO2 after 28 days, accompanied by shifts in community composition. In contrast, the combined stressor treatment showed a non-additive effect with lower microbial gene abundance throughout the experiment. The response of microbial communities in the sandy sediment was less pronounced, with the most noticeable response seen in the archaeal gene abundances in response to environmental stressors over time. 16S rRNA genes (amoA and nirS) were lower in abundance in the combined stressor treatments in sandy sediments. Our results indicated that marine benthic microorganisms, especially in muddy sediments, are susceptible to changes in ocean carbonate chemistry and seawater temperature, which ultimately may have an impact upon key benthic biogeochemical cycles.

9.
PLoS One ; 11(8): e0159289, 2016.
Article in English | MEDLINE | ID: mdl-27487037

ABSTRACT

Plastic debris pervades in our oceans and freshwater systems and the potential ecosystem-level impacts of this anthropogenic litter require urgent evaluation. Microbes readily colonize aquatic plastic debris and members of these biofilm communities are speculated to include pathogenic, toxic, invasive or plastic degrading-species. The influence of plastic-colonizing microorganisms on the fate of plastic debris is largely unknown, as is the role of plastic in selecting for unique microbial communities. This work aimed to characterize microbial biofilm communities colonizing single-use poly(ethylene terephthalate) (PET) drinking bottles, determine their plastic-specificity in contrast with seawater and glass-colonizing communities, and identify seasonal and geographical influences on the communities. A substrate recruitment experiment was established in which PET bottles were deployed for 5-6 weeks at three stations in the North Sea in three different seasons. The structure and composition of the PET-colonizing bacterial/archaeal and eukaryotic communities varied with season and station. Abundant PET-colonizing taxa belonged to the phylum Bacteroidetes (e.g. Flavobacteriaceae, Cryomorphaceae, Saprospiraceae-all known to degrade complex carbon substrates) and diatoms (e.g. Coscinodiscophytina, Bacillariophytina). The PET-colonizing microbial communities differed significantly from free-living communities, but from particle-associated (>3 µm) communities or those inhabiting glass substrates. These data suggest that microbial community assembly on plastics is driven by conventional marine biofilm processes, with the plastic surface serving as raft for attachment, rather than selecting for recruitment of plastic-specific microbial colonizers. A small proportion of taxa, notably, members of the Cryomorphaceae and Alcanivoraceae, were significantly discriminant of PET but not glass surfaces, conjuring the possibility that these groups may directly interact with the PET substrate. Future research is required to investigate microscale functional interactions at the plastic surface.


Subject(s)
Bacteria/classification , Plastics/chemistry , Polyethylene Terephthalates/analysis , Seawater/microbiology , Bacteria/isolation & purification , Biofilms , North Sea , Phylogeny , Seasons , Waste Products/analysis , Water Pollutants, Chemical/analysis
10.
MethodsX ; 3: 364-70, 2016.
Article in English | MEDLINE | ID: mdl-27200269

ABSTRACT

Polycyclic aromatic hydrocarbons (PAHs) are a major class of organic hydrocarbons with high molecular weight that originate from both natural and anthropogenic sources. Sixteen PAHs are included in the U.S Environmental Protection agency list of priority pollutants due to their mutagenic, carcinogenic, toxic and teratogenic properties. In this study, the development and optimization of a simplified and rapid solvent extraction for the characterisation of 16 USEPA priority poly aromatic hydrocarbons (PAHs) in aged contaminated soils was established with subsequent analysis by GC-MS/MS. •Five different extraction solvent systems: dichloromethane: acetone, chloroform: methanol, dichloromethane, acetone: hexane and hexane were assessed in terms of their ability to extract PAHs from aged PAH-contaminated soils.•Highest PAH concentrations were extracted using acetone: hexane and chloroform: methanol. Given the greater toxicity associated with chloroform: methanol, acetone: hexane appears the best choice of solvent extraction system.•This protocol enables efficient extraction of PAHs from aged weathered soils.

11.
Sci Total Environ ; 554-555: 303-10, 2016 Jun 01.
Article in English | MEDLINE | ID: mdl-26956177

ABSTRACT

Arctic ecosystems are threatened by pollution from recently detected extreme atmospheric nitrogen (N) deposition events in which up to 90% of the annual N deposition can occur in just a few days. We undertook the first assessment of the fate of N from extreme deposition in High Arctic tundra and are presenting the results from the whole ecosystem (15)N labelling experiment. In 2010, we simulated N depositions at rates of 0, 0.04, 0.4 and 1.2 g Nm(-2)yr(-1), applied as (15)NH4(15)NO3 in Svalbard (79(°)N), during the summer. Separate applications of (15)NO3(-) and (15)NH4(+) were also made to determine the importance of N form in their retention. More than 95% of the total (15)N applied was recovered after one growing season (~90% after two), demonstrating a considerable capacity of Arctic tundra to retain N from these deposition events. Important sinks for the deposited N, regardless of its application rate or form, were non-vascular plants>vascular plants>organic soil>litter>mineral soil, suggesting that non-vascular plants could be the primary component of this ecosystem to undergo measurable changes due to N enrichment from extreme deposition events. Substantial retention of N by soil microbial biomass (70% and 39% of (15)N in organic and mineral horizon, respectively) during the initial partitioning demonstrated their capacity to act as effective buffers for N leaching. Between the two N forms, vascular plants (Salix polaris) in particular showed difference in their N recovery, incorporating four times greater (15)NO3(-) than (15)NH4(+), suggesting deposition rich in nitrate will impact them more. Overall, these findings show that despite the deposition rates being extreme in statistical terms, biologically they do not exceed the capacity of tundra to sequester pollutant N during the growing season. Therefore, current and future extreme events may represent a major source of eutrophication.


Subject(s)
Environmental Monitoring , Environmental Pollutants/analysis , Nitrogen/analysis , Arctic Regions , Atmosphere/chemistry , Biomass , Soil/chemistry , Svalbard , Tundra
12.
Res Microbiol ; 166(10): 796-813, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26275598

ABSTRACT

The Arctic region is a unique environment, subject to extreme environmental conditions, shaping life therein and contributing to its sensitivity to environmental change. The Arctic is under increasing environmental pressure from anthropogenic activity and global warming. The unique microbial diversity of Arctic regions, that has a critical role in biogeochemical cycling and in the production of greenhouse gases, will be directly affected by and affect, global changes. This article reviews current knowledge and understanding of microbial taxonomic and functional diversity in Arctic soils, the contributions of microbial diversity to ecosystem processes and their responses to environmental change.


Subject(s)
Biodiversity , Soil Microbiology , Arctic Regions , Carbon , Ecosystem , Gases , Microbial Consortia/genetics , Microbial Consortia/physiology , Phylogeny
13.
Front Microbiol ; 6: 542, 2015.
Article in English | MEDLINE | ID: mdl-26082763

ABSTRACT

This research investigated spatial-temporal variation in benthic bacterial community structure, rates of denitrification and dissimilatory nitrate reduction to ammonium (DNRA) processes and abundances of corresponding genes and transcripts at three sites-the estuary-head, mid-estuary and the estuary mouth (EM) along the nitrate gradient of the Colne estuary over an annual cycle. Denitrification rates declined down the estuary, while DNRA rates were higher at the estuary head and middle than the EM. In four out of the six 2-monthly time-points, rates of DNRA were greater than denitrification at each site. Abundance of gene markers for nitrate-reduction (nitrate reductase narG and napA), denitrification (nitrite reductase nirS) and DNRA (DNRA nitrite reductase nrfA) declined along the estuary with significant relationships between denitrification and nirS abundance, and DNRA and nrfA abundance. Spatially, rates of denitrification, DNRA and corresponding functional gene abundances decreased along the estuary. However, temporal correlations between rate processes and functional gene and transcript abundances were not observed.

14.
PLoS One ; 10(2): e0115824, 2015.
Article in English | MEDLINE | ID: mdl-25706303

ABSTRACT

Within drinking water distribution systems (DWDS), microorganisms form multi-species biofilms on internal pipe surfaces. A matrix of extracellular polymeric substances (EPS) is produced by the attached community and provides structure and stability for the biofilm. If the EPS adhesive strength deteriorates or is overcome by external shear forces, biofilm is mobilised into the water potentially leading to degradation of water quality. However, little is known about the EPS within DWDS biofilms or how this is influenced by community composition or environmental parameters, because of the complications in obtaining biofilm samples and the difficulties in analysing EPS. Additionally, although biofilms may contain various microbial groups, research commonly focuses solely upon bacteria. This research applies an EPS analysis method based upon fluorescent confocal laser scanning microscopy (CLSM) in combination with digital image analysis (DIA), to concurrently characterize cells and EPS (carbohydrates and proteins) within drinking water biofilms from a full-scale DWDS experimental pipe loop facility with representative hydraulic conditions. Application of the EPS analysis method, alongside DNA fingerprinting of bacterial, archaeal and fungal communities, was demonstrated for biofilms sampled from different positions around the pipeline, after 28 days growth within the DWDS experimental facility. The volume of EPS was 4.9 times greater than that of the cells within biofilms, with carbohydrates present as the dominant component. Additionally, the greatest proportion of EPS was located above that of the cells. Fungi and archaea were established as important components of the biofilm community, although bacteria were more diverse. Moreover, biofilms from different positions were similar with respect to community structure and the quantity, composition and three-dimensional distribution of cells and EPS, indicating that active colonisation of the pipe wall is an important driver in material accumulation within the DWDS.


Subject(s)
Biofilms/growth & development , Drinking Water/microbiology , Models, Theoretical , Water Microbiology , Water Quality , Water Supply
15.
BMC Microbiol ; 14: 232, 2014 Sep 23.
Article in English | MEDLINE | ID: mdl-25245856

ABSTRACT

BACKGROUND: Synthetic microplastics (≤5-mm fragments) are emerging environmental contaminants that have been found to accumulate within coastal marine sediments worldwide. The ecological impacts and fate of microplastic debris are only beginning to be revealed, with previous research into these topics having primarily focused on higher organisms and/or pelagic environments. Despite recent research into plastic-associated microorganisms in seawater, the microbial colonization of microplastics in benthic habitats has not been studied. Therefore, we employed a 14-day microcosm experiment to investigate bacterial colonization of low-density polyethylene (LDPE) microplastics within three types of coastal marine sediment from Spurn Point, Humber Estuary, U.K. RESULTS: Bacterial attachment onto LDPE within sediments was demonstrated by scanning electron microscopy and catalyzed reporter deposition fluorescence in situ hybridisation (CARD-FISH). Log-fold increases in the abundance of 16S rRNA genes from LDPE-associated bacteria occurred within 7 days with 16S rRNA gene numbers on LDPE surfaces differing significantly across sediment types, as shown by quantitative PCR. Terminal-restriction fragment length polymorphism (T-RFLP) analysis demonstrated rapid selection of LDPE-associated bacterial assemblages whose structure and composition differed significantly from those in surrounding sediments. Additionally, T-RFLP analysis revealed successional convergence of the LDPE-associated communities from the different sediments over the 14-day experiment. Sequencing of cloned 16S rRNA genes demonstrated that these communities were dominated after 14 days by the genera Arcobacter and Colwellia (totalling 84-93% of sequences). Attachment by Colwellia spp. onto LDPE within sediments was confirmed by CARD-FISH. CONCLUSIONS: These results demonstrate that bacteria within coastal marine sediments can rapidly colonize LDPE microplastics, with evidence for the successional formation of plastisphere-specific bacterial assemblages. Although the taxonomic compositions of these assemblages are likely to differ between marine sediments and the water column, both Arcobacter and Colwellia spp. have previously been affiliated with the degradation of hydrocarbon contaminants within low-temperature marine environments. Since hydrocarbon-degrading bacteria have also been discovered on plastic fragments in seawater, our data suggest that recruitment of hydrocarbonoclastic bacteria on microplastics is likely to represent a shared feature between both benthic and pelagic marine habitats.


Subject(s)
Bacteria/classification , Bacteria/growth & development , Biodiversity , Geologic Sediments/microbiology , Polyethylene , Water Pollutants, Chemical , Bacteria/genetics , Cluster Analysis , DNA, Bacterial/chemistry , DNA, Bacterial/genetics , DNA, Ribosomal/chemistry , DNA, Ribosomal/genetics , In Situ Hybridization, Fluorescence , Microscopy, Electron, Scanning , Molecular Sequence Data , Phylogeny , Polymorphism, Restriction Fragment Length , RNA, Ribosomal, 16S/genetics , Real-Time Polymerase Chain Reaction , Sequence Analysis, DNA , United Kingdom
16.
FEMS Microbiol Ecol ; 90(2): 478-92, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25109340

ABSTRACT

Plastic pollution is now recognised as a major threat to marine environments and marine biota. Recent research highlights that diverse microbial species are found to colonise plastic surfaces (the plastisphere) within marine waters. Here, we investigate how the structure and diversity of marine plastisphere microbial community vary with respect to season, location and plastic substrate type. We performed a 6-week exposure experiment with polyethylene terephthalate (PET) bottles in the North Sea (UK) as well as sea surface sampling of plastic polymers in Northern European waters. Scanning electron microscopy revealed diverse plastisphere communities comprising prokaryotic and eukaryotic microorganisms. Denaturing gradient gel electrophoresis (DGGE) and sequencing analysis revealed that plastisphere microbial communities on PET fragments varied both with season and location and comprised of bacteria belonging to Bacteroidetes, Proteobacteria, Cyanobacteria and members of the eukaryotes Bacillariophyceae and Phaeophyceae. Polymers sampled from the sea surface mainly comprised polyethylene, polystyrene and polypropylene particles. Variation within plastisphere communities on different polymer types was observed, but communities were primarily dominated by Cyanobacteria. This research reveals that the composition of plastisphere microbial communities in marine waters varies with season, geographical location and plastic substrate type.


Subject(s)
Bacteria/isolation & purification , Biofilms , Eukaryota/isolation & purification , Plastics/metabolism , Seawater/microbiology , Water Pollutants/metabolism , Bacteria/classification , Bacterial Physiological Phenomena , Denaturing Gradient Gel Electrophoresis , Eukaryota/classification , Eukaryota/physiology , Molecular Sequence Data , North Sea , Oceans and Seas , Seasons
17.
FEMS Microbiol Ecol ; 82(2): 254-67, 2012 Nov.
Article in English | MEDLINE | ID: mdl-22168226

ABSTRACT

The cryosphere presents some of the most challenging conditions for life on earth. Nevertheless, (micro)biota survive in a range of niches in glacial systems, including water-filled depressions on glacial surfaces termed cryoconite holes (centimetre to metre in diameter and up to 0.5 m deep) that contain dark granular material (cryoconite). In this study, the structure of bacterial and eukaryotic cryoconite communities from ten different locations in the Arctic and Antarctica was compared using T-RFLP analysis of rRNA genes. Community structure varied with geography, with greatest differences seen between communities from the Arctic and the Antarctic. DNA sequencing of rRNA genes revealed considerable diversity, with individual cryoconite hole communities containing between six and eight bacterial phyla and five and eight eukaryotic 'first-rank' taxa and including both bacterial and eukaryotic photoautotrophs. Bacterial Firmicutes and Deltaproteobacteria and Epsilonproteobacteria, eukaryotic Rhizaria, Haptophyta, Choanomonada and Centroheliozoa, and archaea were identified for the first time in cryoconite ecosystems. Archaea were only found within Antarctic locations, with the majority of sequences (77%) related to members of the Thaumarchaeota. In conclusion, this research has revealed that Antarctic and Arctic cryoconite holes harbour geographically distinct highly diverse communities and has identified hitherto unknown bacterial, eukaryotic and archaeal taxa, therein.


Subject(s)
Archaea/classification , Bacteria/classification , Biota , Eukaryota/classification , Ice Cover/microbiology , Antarctic Regions , Archaea/genetics , Archaea/isolation & purification , Arctic Regions , Bacteria/genetics , Bacteria/isolation & purification , Eukaryota/genetics , Eukaryota/isolation & purification , Genes, rRNA , Polymorphism, Restriction Fragment Length
18.
Biochem Soc Trans ; 39(1): 315-20, 2011 Jan.
Article in English | MEDLINE | ID: mdl-21265795

ABSTRACT

Sediments play a key role in the marine nitrogen cycle and can act either as a source or a sink of biologically available (fixed) nitrogen. This cycling is driven by a number of microbial remineralization reactions, many of which occur across the oxic/anoxic interface near the sediment surface. The presence and activity of large burrowing macrofauna (bioturbators) in the sediment can significantly affect these microbial processes by altering the physicochemical properties of the sediment. For example, the building and irrigation of burrows by bioturbators introduces fresh oxygenated water into deeper sediment layers and allows the exchange of solutes between the sediment and water column. Burrows can effectively extend the oxic/anoxic interface into deeper sediment layers, thus providing a unique environment for nitrogen-cycling microbial communities. Recent studies have shown that the abundance and diversity of micro-organisms can be far greater in burrow wall sediment than in the surrounding surface or subsurface sediment; meanwhile, bioturbated sediment supports higher rates of coupled nitrification-denitrification reactions and increased fluxes of ammonium to the water column. In the present paper we discuss the potential for bioturbation to significantly affect marine nitrogen cycling, as well as the molecular techniques used to study microbial nitrogen cycling communities and directions for future study.


Subject(s)
Geologic Sediments , Nitrogen Cycle/physiology , Nitrogen/metabolism , Seawater , Animals , Genetic Markers , Geologic Sediments/chemistry , Geologic Sediments/microbiology , Oxygen/metabolism , Seawater/chemistry , Seawater/microbiology
19.
ISME J ; 4(12): 1531-44, 2010 Dec.
Article in English | MEDLINE | ID: mdl-20596074

ABSTRACT

Bioturbation is a key process in coastal sediments, influencing microbially driven cycling of nutrients as well as the physical characteristics of the sediment. However, little is known about the distribution, diversity and function of the microbial communities that inhabit the burrows of infaunal macroorganisms. In this study, terminal-restriction fragment length polymorphism analysis was used to investigate variation in the structure of bacterial communities in sediment bioturbated by the burrowing shrimp Upogebia deltaura or Callianassa subterranea. Analyses of 229 sediment samples revealed significant differences between bacterial communities inhabiting shrimp burrows and those inhabiting ambient surface and subsurface sediments. Bacterial communities in burrows from both shrimp species were more similar to those in surface-ambient than subsurface-ambient sediment (R=0.258, P<0.001). The presence of shrimp was also associated with changes in bacterial community structure in surrounding surface sediment, when compared with sediments uninhabited by shrimp. Bacterial community structure varied with burrow depth, and also between individual burrows, suggesting that the shrimp's burrow construction, irrigation and maintenance behaviour affect the distribution of bacteria within shrimp burrows. Subsequent sequence analysis of bacterial 16S rRNA genes from surface sediments revealed differences in the relative abundance of bacterial taxa between shrimp-inhabited and uninhabited sediments; shrimp-inhabited sediment contained a higher proportion of proteobacterial sequences, including in particular a twofold increase in Gammaproteobacteria. Chao1 and ACE diversity estimates showed that taxon richness within surface bacterial communities in shrimp-inhabited sediment was at least threefold higher than that in uninhabited sediment. This study shows that bioturbation can result in significant structural and compositional changes in sediment bacterial communities, increasing bacterial diversity in surface sediments and resulting in distinct bacterial communities even at depth within the burrow. In an area of high macrofaunal abundance, this could lead to alterations in the microbial transformations of important nutrients at the sediment-water interface.


Subject(s)
Bacteria/classification , Biodiversity , Decapoda/physiology , Geologic Sediments/microbiology , Water Microbiology , Animals , Bacteria/genetics , DNA, Bacterial/genetics , Genes, Bacterial , Geologic Sediments/analysis , Polymorphism, Restriction Fragment Length , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA
20.
Appl Microbiol Biotechnol ; 87(2): 749-56, 2010 Jun.
Article in English | MEDLINE | ID: mdl-20300747

ABSTRACT

This study presents a new coupon sampling device that can be inserted directly into the pipes within water distribution systems (WDS), maintaining representative near wall pipe flow conditions and enabling simultaneous microscopy and DNA-based analysis of biofilms formed in situ. To evaluate this sampling device, fluorescent in situ hybridization (FISH) and denaturing gradient gel electrophoresis (DGGE) analyses were used to investigate changes in biofilms on replicate coupons within a non-sterile pilot-scale WDS. FISH analysis demonstrated increases in bacterial biofilm coverage of the coupon surface over time, while the DGGE analysis showed the development of increasingly complex biofilm communities, with time-specific clustering of these communities. This coupon design offers improvements over existing biofilm sampling devices in that it enables simultaneous quantitative and qualitative compositional characterization of biofilm assemblages formed within a WDS, while importantly maintaining fully representative near wall pipe flow conditions. Hence, it provides a practical approach that can be used to capture the interactions between biofilm formation and changing abiotic conditions, boundary shear stress, and turbulent driven exchange within WDS.


Subject(s)
Bacteria/isolation & purification , Biofilms , Equipment Design , Genetic Techniques/instrumentation , Microscopy/instrumentation , Water Microbiology , Water Supply/analysis , Bacteria/cytology , Bacteria/genetics , Bacterial Physiological Phenomena , DNA, Bacterial/genetics
SELECTION OF CITATIONS
SEARCH DETAIL