Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
BMC Vet Res ; 14(1): 378, 2018 Dec 03.
Article in English | MEDLINE | ID: mdl-30509251

ABSTRACT

BACKGROUND: Leishmania parasites cause visceral leishmaniasis (VL), an important infectious disease that is endemic to large parts of the world and often leads to epidemics. Sand flies are the primary transmission vector for the parasite in endemic regions. We hypothesized that sheep might serve as an overlooked reservoir for Leishmania transmission to humans due to the asymptomatic nature of infection in many species. As a preliminary test of this hypothesis, the aim of the present study was to investigate sheep in an area of China that is endemic for the desert sub-type of zoonotic VL and establish if they are potential carriers of Leishmania. RESULTS: Sheep tissue samples were collected from abattoirs in VL endemic areas of Jiashi County, China during the non-transmission season. rK39 immunochromatographic tests were performed to detect the presence of the parasite in blood samples. In addition, DNA was extracted from the blood, and used for detection of the Leishmania-specific internal transcribed spacer-1 (ITS-1) genomic region using a nested polymerase chain reaction (PCR) approach. PCR products were further analyzed to identify restriction fragment-length polymorphism patterns and representative sequences of each pattern were selected for phylogenetic analysis. The rK-39 and nested PCR data indicated positive detection rates for Leishmania in sheep of 26.32 and 54.39%, respectively. The phylogenetic analysis revealed that all of the samples belonged to the species L. infantum and were closely related to strains isolated from human infections in the same area. CONCLUSIONS: Sheep could be a potential host for Leishmania in VL endemic areas in China and may be an overlooked reservoir of human VL transmission in this region. To further confirm livestock as a potential host, further verification is required using a sand fly biting experiment.


Subject(s)
Leishmania infantum/classification , Leishmania infantum/physiology , Leishmaniasis, Visceral/epidemiology , Leishmaniasis, Visceral/parasitology , Animals , China/epidemiology , DNA, Ribosomal Spacer/genetics , Host Specificity , Humans , Leishmania infantum/genetics , Phylogeny , Sheep
2.
Parasit Vectors ; 9: 148, 2016 Mar 15.
Article in English | MEDLINE | ID: mdl-26979847

ABSTRACT

BACKGROUND: Kashi Prefecture of Xinjiang is one of the most seriously affected areas with anthroponotic visceral leishmaniasis in China. A better understanding of space distribution features in this area was needed to guide strategies to eliminate visceral leishmaniasis from highly endemic areas. We performed a spatial analysis using the data collected in Bosh Klum Township in Xinjiang China. METHODS: Based on the report of endemic diseases between 1990 and 2005, three villages with a high number of visceral leishmaniasis cases in Bosh Klum Township were selected. We conducted a household survey to collect the baseline data of kala-azar patients using standard case definitions. The geographical information was recorded with GIS equipment. A binomial distribution fitting test, runs test, and Scan statistical analysis were used to assess the space distribution of the study area. RESULTS: The result of the binomial distribution fitting test showed that the distribution of visceral leishmaniasis cases in local families was inconsistent (χ(2) = 53.23, P < 0.01). The results of runs test showed that the distribution of leishmaniasis infected families along the channel was not random in the group of more than five infected families. The proportion of this kind of group in all infected families was 63.84 % (113 of 177). In the Scan statistical analysis, spatial aggregation was analyzed by poisson model, which found 3 spatial distribution areas 1) Zone A was located in a center point of 76.153447°E, 39.528477°N within its 1.11 mile radius, where the cumulative life-incidence of leishmaniasis was 1.95 times as high as that in surrounding areas (P < 0.05); 2) Zone B was located in a center point of 76.111968°E, 39.531895°N within its 0.54 mile radius, where the cumulative life-incidence of leishmaniasis was 1.82 times as high as that in surrounding areas (P < 0.01); and 3) Zone C was located in a center point of 76.195427°E, 39.563835°N within its 0.68 mile radius, where the cumulative life-incidence of leishmaniasis was 1.31 times as high as that in surrounding areas (P < 0.05). CONCLUSIONS: The spatial distribution of visceral leishmaniasis-infected families was clustered. Thus, the proper use of this finding would be an improvement in highly endemic areas, which could help identify the types of endemic areas and population at high risk and carry out appropriate measures to prevent and control VL in this area as well.


Subject(s)
Leishmaniasis, Visceral/epidemiology , China/epidemiology , Desert Climate , Humans , Spatial Analysis
SELECTION OF CITATIONS
SEARCH DETAIL