Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Database
Language
Publication year range
1.
Plant J ; 117(6): 1856-1872, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38113327

ABSTRACT

The yield of maize (Zea mays L.) crops depends on their ability to intercept sunlight throughout the growing cycle, transform this energy into biomass and allocate it to the kernels. Abiotic stresses affect these eco-physiological determinants, reducing crop grain yield below the potential of each environment. Here we analyse the impact of combined abiotic stresses, such as water restriction and nitrogen deficiency or water restriction and elevated temperatures. Crop yield depends on the product of kernel yield per plant and the number of plants per unit soil area, but increasing plant population density imposes a crowding stress that reduces yield per plant, even within the range that maximises crop yield per unit soil area. Therefore, we also analyse the impact of abiotic stresses under different plant densities. We show that the magnitude of the detrimental effects of two combined stresses on field-grown plants can be lower, similar or higher than the sum of the individual stresses. These patterns depend on the timing and intensity of each one of the combined stresses and on the effects of one of the stresses on the status of the resource whose limitation causes the other. The analysis of the eco-physiological determinants of crop yield is useful to guide and prioritise the rapidly progressing studies aimed at understanding the molecular mechanisms underlying plant responses to combined stresses.


Subject(s)
Crops, Agricultural , Zea mays , Zea mays/genetics , Soil , Edible Grain , Water
2.
J Exp Bot ; 72(14): 5180-5188, 2021 07 10.
Article in English | MEDLINE | ID: mdl-33770157

ABSTRACT

Before the introduction of genetically modified insect-tolerant maize (Zea mays L.) in 1997, most of the production of this staple in Argentina was concentrated in humid and sub-humid temperate regions. Early spring sowings minimized the risk of water deficit around flowering and yield reduction due to pests. Use of genetically modified maize allowed optimization of sowing dates to synchronize critical periods for kernel set determination with the times of the year when water deficits are less likely, reducing large interannual variations in grain yield. This change in sowing date did not start until 2009, after the occurrence of two successive dry phases of the El Niño-Southern Oscillation phenomenon. The area of land cropped to maize in Argentina has expanded dramatically since then, particularly beyond the humid areas. Currently, maize is sown in an almost 50%/50% distribution between early and late sowings, including double cropping. Changes in agronomic practices such as sowing date and production area can lead to changes in the timing and intensity of water deficits along the maize growth cycle. This review provides an overview of new patterns of water deficit across humid, sub-humid, and semi-arid mid-latitude environments of Argentina, and their effects on grain yield and yield components.


Subject(s)
Droughts , Zea mays , Argentina , Edible Grain , Seasons , Zea mays/genetics
3.
J Exp Bot ; 72(10): 3902-3913, 2021 05 04.
Article in English | MEDLINE | ID: mdl-33744949

ABSTRACT

Identifying the physiological traits indirectly selected during the search for high-yielding maize hybrids is useful for guiding further improvements. To investigate such traits, in this study we focused on the critical period of kernel formation because kernel number is the main yield component affected by breeding. Our results show that breeding has increased the number of florets per ear and ear growth rate but not the vegetative shoot growth rate, suggesting localised effects around the ear. Consistent with this possibility, breeding has increased the net CO2 exchange of the ear leaf in field-grown crops grown at high population densities. This response is largely accounted for by increased light interception (which increases photosynthesis) and by reduced rates of respiration of the ear leaf in modern hybrids compared to older ones. Modern hybrids show increased ear-leaf area per unit leaf dry matter (specific leaf area), which accounts for the reduced respiratory load per unit leaf area. These observations are consistent with a model where the improved ear leaf CO2 exchange helps the additional florets produced by modern hybrids to survive the critical period of high susceptibility to stress and hence to produce kernels.


Subject(s)
Carbon Dioxide , Zea mays , Photosynthesis , Plant Breeding , Plant Leaves , Zea mays/genetics
4.
J Exp Bot ; 71(10): 3142-3156, 2020 05 30.
Article in English | MEDLINE | ID: mdl-32140724

ABSTRACT

Soybean yield is limited primarily by abiotic constraints. No transgenic soybean with improved abiotic stress tolerance is commercially available. We transformed soybean plants with genetic constructs able to express the sunflower transcription factor HaHB4, which confers drought tolerance to Arabidopsis and wheat. One line (b10H) carrying the sunflower promoter was chosen among three independent lines because it exhibited the best performance in seed yield, and was evaluated in the greenhouse and in 27 field trials in different environments in Argentina. In greenhouse experiments, transgenic plants showed increased seed yield under stress conditions together with greater epicotyl diameter, larger xylem area, and increased water use efficiency compared with controls. They also exhibited enhanced seed yield in warm and dry field conditions. This response was accompanied by an increase in seed number that was not compensated by a decrease in individual seed weight. Transcriptome analysis of plants from a field trial with maximum difference in seed yield between genotypes indicated the induction of genes encoding redox and heat shock proteins in b10H. Collectively, our results indicate that soybeans transformed with HaHB4 are expected to have a reduced seed yield penalty when cultivated in warm and dry conditions, which constitute the best target environments for this technology.


Subject(s)
Arabidopsis , Helianthus , Arabidopsis/genetics , Argentina , Droughts , Helianthus/genetics , Plants, Genetically Modified/genetics , Glycine max/genetics , Transcription Factors/genetics
5.
Ann Bot ; 120(4): 577-590, 2017 10 17.
Article in English | MEDLINE | ID: mdl-28981582

ABSTRACT

Background and Aims: The symmetry of venation patterning in leaves is highly conserved within a plant species. Auxins are involved in this process and also in xylem vasculature development. Studying transgenic Arabidopsis plants ectopically expressing the sunflower transcription factor HaHB4, it was observed that there was a significant lateral-vein asymmetry in leaves and in xylem formation compared to wild type plants. To unravel the molecular mechanisms behind this phenotype, genes differentially expressed in these plants and related to auxin influx were investigated. Methods: Candidate genes responsible for the observed phenotypes were selected using a co-expression analysis. Single and multiple mutants in auxin influx carriers were characterized by morphological, physiological and molecular techniques. The analysis was further complemented by restoring the wild type (WT) phenotype by mutant complementation studies and using transgenic soybean plants ectopically expressing HaHB4 . Key Results: LAX2 , down-regulated in HaHB4 transgenic plants, was bioinformatically chosen as a candidate gene. The quadruple mutant aux1 lax1 lax2 lax3 and the single mutants, except lax1, presented an enhanced asymmetry in venation patterning. Additionally, the xylem vasculature of the lax2 mutant and the HaHB4 -expressing plants differed from the WT vasculature, including increased xylem length and number of xylem cell rows. Complementation of the lax2 mutant with the LAX2 gene restored both lateral-vein symmetry and xylem/stem area ratio in the stem, showing that auxin homeostasis is required to achieve normal vascular development. Interestingly, soybean plants ectopically expressing HaHB4 also showed an increased asymmetry in the venation patterning, accompanied by the repression of several GmLAX genes. Conclusions: Auxin influx carriers have a significant role in leaf venation pattering in leaves and, in particular, LAX2 is required for normal xylem development, probablt controlling auxin homeostasis.


Subject(s)
Arabidopsis Proteins/physiology , Membrane Transport Proteins/physiology , Plant Leaves/growth & development , Xylem/growth & development , Arabidopsis/anatomy & histology , Arabidopsis/growth & development , Indoleacetic Acids/metabolism , Oligonucleotide Array Sequence Analysis , Phenotype , Plant Growth Regulators/metabolism , Plant Growth Regulators/physiology , Plant Leaves/anatomy & histology , Plants, Genetically Modified , Real-Time Polymerase Chain Reaction , Glycine max/anatomy & histology , Glycine max/growth & development
SELECTION OF CITATIONS
SEARCH DETAIL