Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
2.
J Mol Cell Cardiol ; 170: 34-46, 2022 09.
Article in English | MEDLINE | ID: mdl-35661621

ABSTRACT

AIMS: Cardiac contractility, essential to maintaining proper cardiac output and circulation, is regulated by G protein-coupled receptor (GPCR) signaling. Previously, the absence of regulator of G protein signaling (RGS) 2 and 5, separately, was shown to cause G protein dysregulation, contributing to modest blood pressure elevation and exaggerated cardiac hypertrophic response to pressure-overload. Whether RGS2 and 5 redundantly control G protein signaling to maintain cardiovascular homeostasis is unknown. Here we examined how the dual absence of RGS2 and 5 (Rgs2/5 dbKO) affects blood pressure and cardiac structure and function. METHODS AND RESULTS: We found that Rgs2/5 dbKO mice showed left ventricular dilatation at baseline by echocardiography. Cardiac contractile response to dobutamine stress test was sex-dependently reduced in male Rgs2/5 dbKO relative to WT mice. When subjected to surgery-induced stress, male Rgs2/5 dbKO mice had 75% mortality within 72-96 h after surgery, accompanied by elevated baseline blood pressure and decreased cardiac contractile function. At the cellular level, cardiomyocytes (CM) from Rgs2/5 dbKO mice showed augmented Ca2+ transients and increased incidence of arrhythmia without augmented contractile response to electrical field stimulation (EFS) and activation of ß-adrenergic receptors (ßAR) with isoproterenol. Dual loss of Rgs2 and 5 suppressed forskolin-induced cAMP production, which was restored by Gi/o inactivation with pertussis toxin that also reduced arrhythmogenesis during EFS or ßAR stimulation. Cardiomyocyte NCX and PMCA mRNA expression was unaffected in Rgs2/5 dbKO male mice. However, there was an exaggerated elevation of EFS-induced cytoplasmic Ca2+ in the presence of SERCA blockade with thapsigargin. CONCLUSIONS: We conclude that RGS2 and 5 promote normal ventricular rhythm by coordinating their regulatory activity towards Gi/o signaling and facilitating cardiomyocyte calcium handling.


Subject(s)
GTP-Binding Protein alpha Subunits, Gi-Go , Myocytes, Cardiac , RGS Proteins , Animals , Arrhythmias, Cardiac/metabolism , Cardiomegaly/metabolism , GTP-Binding Protein alpha Subunits, Gi-Go/metabolism , Male , Mice , Myocytes, Cardiac/metabolism , RGS Proteins/genetics , RGS Proteins/metabolism , Signal Transduction
3.
J Am Heart Assoc ; 8(9): e010917, 2019 05 07.
Article in English | MEDLINE | ID: mdl-31030617

ABSTRACT

Background Decreased uterine blood flow is known to contribute to pregnancy complications such as gestational hypertension and preeclampsia. Previously, we showed that the loss of regulator of G protein signaling 2 ( RGS 2), a GTP ase activating protein for Gq/11 and Gi/o class G proteins, decreases uterine blood flow in the nonpregnant state in mice. Here, we examined the effects of the absence of RGS 2 and 5 on uterine blood flow and uterine vascular structure and function at early, mid, and late gestation, as well as peripartum period in mice. Methods and Results Abdominal Doppler ultrasonography was performed on adult female wild-type, Rgs2-/-, and Rgs5-/- mice at pre-pregnancy, gestational days 10, 15, and 18, and postpartum day 3. Uterine artery structure and function were also assessed by vessel myograph studies. At mid-pregnancy, uterine blood flow decreased in both Rgs2-/- and Rgs5-/- mice, whereas resistive index increased only in Rgs2-/- mice. In uterine arteries from wild-type mice, mRNA expression of RGS 2 and 4 increased, whereas RGS 5 expression remained elevated at mid-pregnancy. These changes in gene expression were unique to uterine arteries because they were absent in mesenteric arteries and the aorta of wild-type mice. In Rgs2-/- mice, uterine artery medial cross-sectional area and G protein-coupled receptor-mediated vasoconstriction increased in mid-pregnancy, implicating a role for RGS 2 in structural and functional remodeling of uterine arteries during pregnancy. In contrast, RGS 5 absence increased vasoconstriction only in the peripartum period. Conclusions These data together indicate that RGS 2 plays a critical role in the structural and functional remodeling of uterine arteries to impact uterine blood flow during pregnancy. Targeting the signaling pathway regulated by RGS 2 may therefore be a therapeutic strategy for ameliorating utero-placental perfusion disorders during pregnancy.


Subject(s)
Pregnancy, Animal/genetics , RGS Proteins/genetics , Regional Blood Flow/genetics , Uterine Artery/metabolism , Vascular Remodeling/genetics , Animals , Female , Mice , Mice, Knockout , Pregnancy , Pregnancy, Animal/metabolism , Pregnancy, Animal/physiology , RGS Proteins/metabolism , RNA, Messenger/metabolism , Ultrasonography, Doppler , Uterine Artery/diagnostic imaging , Uterine Artery/physiology , Uterine Artery/physiopathology , Vascular Resistance/genetics
4.
J Neurosci ; 38(17): 4146-4162, 2018 04 25.
Article in English | MEDLINE | ID: mdl-29610439

ABSTRACT

Cardiovascular disease and susceptibility to infection are leading causes of morbidity and mortality for individuals with spinal cord injury (SCI). A major contributor to these is autonomic dysreflexia (AD), an amplified reaction of the autonomic nervous system (hallmarked by severe hypertension) in response to sensory stimuli below the injury. Maladaptive plasticity of the spinal sympathetic reflex circuit below the SCI results in AD intensification over time. Mechanisms underlying this maladaptive plasticity are poorly understood, restricting the identification of treatments. Thus, no preventative treatments are currently available. Neuroinflammation has been implicated in other pathologies associated with hyperexcitable neural circuits. Specifically, the soluble form of TNFα (sTNFα) is known to play a role in neuroplasticity. We hypothesize that persistent expression of sTNFα in spinal cord underlies AD exacerbation. To test this, we intrathecally administered XPro1595, a biologic that renders sTNFα nonfunctional, after complete, high-level SCI in female rats. This dramatically attenuated the intensification of colorectal distension-induced and naturally occurring AD events. This improvement is mediated via decreased sprouting of nociceptive primary afferents and activation of the spinal sympathetic reflex circuit. We also examined peripheral vascular function using ex vivo pressurized arterial preparations and immune function via flow cytometric analysis of splenocytes. Diminishing AD via pharmacological inhibition of sTNFα mitigated ensuing vascular hypersensitivity and immune dysfunction. This is the first demonstration that neuroinflammation-induced sTNFα is critical for altering the spinal sympathetic reflex circuit, elucidating a novel mechanism for AD. Importantly, we identify the first potential pharmacological, prophylactic treatment for this life-threatening syndrome.SIGNIFICANCE STATEMENT Autonomic dysreflexia (AD), a disorder that develops after spinal cord injury (SCI) and is hallmarked by sudden, extreme hypertension, contributes to cardiovascular disease and susceptibility to infection, respectively, two leading causes of mortality and morbidity in SCI patients. We demonstrate that neuroinflammation-induced expression of soluble TNFα plays a critical role in AD, elucidating a novel underlying mechanism. We found that intrathecal administration after SCI of a biologic that inhibits soluble TNFα signaling dramatically attenuates AD and significantly reduces AD-associated peripheral vascular and immune dysfunction. We identified mechanisms behind diminished plasticity of neuronal populations within the spinal sympathetic reflex circuit. This study is the first to pinpoint a potential pharmacological, prophylactic strategy to attenuate AD and ensuing cardiovascular and immune dysfunction.


Subject(s)
Autonomic Dysreflexia/metabolism , Signal Transduction , Tumor Necrosis Factor-alpha/metabolism , Animals , Autonomic Dysreflexia/physiopathology , Cells, Cultured , Female , Mesenteric Arteries/physiopathology , Rats , Rats, Wistar , Spinal Cord/drug effects , Spinal Cord/metabolism , Spinal Cord/physiopathology , Spleen/immunology , Spleen/physiopathology , Tumor Necrosis Factor-alpha/antagonists & inhibitors , Tumor Necrosis Factor-alpha/pharmacology
5.
Kidney Int ; 92(5): 1100-1118, 2017 11.
Article in English | MEDLINE | ID: mdl-28754555

ABSTRACT

Elastin deficiency causes vascular stiffening, a leading risk for hypertension and chronic kidney disease (CKD). The mechanisms mediating hypertension and/or CKD pathogenesis due to elastin deficiency are poorly understood. Using the elastin heterozygous (Eln+/-) mouse model, we tested whether renal dysfunction due to elastin deficiency occurs independently of and precedes the development of hypertension. We assessed blood pressure and renal hemodynamics in 30-day and 12-week-old male and female mice. At P30, blood pressure of Eln+/- mice was similar to wild-type controls; however, renal blood flow was lower, whereas renal vascular resistance was augmented at baseline in Eln+/- mice. At 12 weeks, renal vascular resistance remained elevated while filtration fraction was higher in male Eln+/- relative to wild-type mice. Heterozygous mice showed isolated systolic hypertension that was evident only at nighttime. Acute salt loading with 6% dietary sodium increased daytime systolic blood pressure only in male Eln+/- mice, causing a rightward shift and blunted slope of the pressure-natriuresis curve. Renal interlobar artery basal tone and myogenic response to increasing intraluminal pressure at day 10 were similar, whereas they were augmented at day 30 and at 12 weeks old in Eln+/- mice, and normalized by the AT1R blocker, candesartan. Heterozygous mice also exhibited podocyte foot process damage that persisted even when blood pressure was normalized to wild-type levels with hydralazine. Thus, elastin insufficiency triggers structural defects and abnormal remodeling of renal vascular signaling involving AT1R-mediated vascular mechanotransduction and renal hyperfiltration with increased blood pressure sensitivity to dietary sodium contributing to systolic hypertension.


Subject(s)
Elastin/deficiency , Hypertension/etiology , Kidney/blood supply , Renal Insufficiency, Chronic/etiology , Vascular Resistance , Angiotensin II Type 1 Receptor Blockers/pharmacology , Animals , Benzimidazoles/pharmacology , Biphenyl Compounds , Blood Pressure/drug effects , Disease Models, Animal , Elastin/genetics , Female , Humans , Kidney/metabolism , Kidney/pathology , Male , Mechanotransduction, Cellular/drug effects , Mice , Mice, Inbred C57BL , Mice, Transgenic , Receptor, Angiotensin, Type 1/metabolism , Renal Elimination , Renal Insufficiency, Chronic/pathology , Signal Transduction , Sodium Chloride, Dietary/adverse effects , Sodium Chloride, Dietary/metabolism , Sodium Chloride, Dietary/urine , Tetrazoles/pharmacology
6.
Physiol Rep ; 4(2)2016 Feb.
Article in English | MEDLINE | ID: mdl-26811058

ABSTRACT

Uterine artery blood flow (UABF) is critical to maintaining uterine perfusion in nonpregnant states and for uteroplacental delivery of nutrients and oxygen to the fetus during pregnancy. Impaired UABF is implicated in infertility and several pregnancy complications including fetal growth restriction, small for gestational age, and preeclampsia. The etiology of abnormal UABF is not known. Here, we determined whether deficiency or loss of RGS2, a GTPase-activating protein for Gq/11 and Gi/o class G proteins, affects UABF in nonpregnant mice. We used Doppler ultrasonography to assess UABF in wild type (WT), Rgs2 heterozygous (Rgs2+/-), and homozygous knockout (Rgs2-/-) mice. Video microscopy was used for ex vivo examination of uterine artery myogenic tone and fura-2 imaging for in vitro assessment of internal stores Ca(2+) release. We found that baseline UABF velocity was markedly decreased while impedance measured as resistive index (WT = 0.58 ± 0.04 vs. Rgs2-/- = 0.71 ± 0.03, P < 0.01) and pulsatile index (WT = 0.90 ± 0.06 vs. Rgs2-/- = 1.25 ± 0.11, P < 0.01) was increased in Rgs2-/- mice. Uterine artery tone was augmented in Rgs2+/- and Rgs2-/- mice, which was normalized to WT levels following Gi/o and Gq inactivation. Conversely, blockade of ryanodine receptors increased WT myogenic tone to RGS2 mutant levels. The data together indicate that RGS2 deficiency decreases UABF by increasing myogenic tone at least partly through prolonged G protein activation. Mutations that decrease vascular RGS2 expression may be a predisposition to decreased uterine blood flow. Targeting G protein signaling therefore might improve uterine and uteroplacental underperfusion disorders.


Subject(s)
GTP-Binding Proteins/metabolism , Muscle Tonus/physiology , Muscle, Smooth, Vascular/metabolism , RGS Proteins/metabolism , Uterine Artery/metabolism , Uterus/blood supply , Animals , Disease Models, Animal , Female , Fetal Growth Retardation/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Pregnancy , Ultrasonography, Doppler
7.
PLoS One ; 10(7): e0132594, 2015.
Article in English | MEDLINE | ID: mdl-26193676

ABSTRACT

Regulator of G protein signaling 2 (RGS2) controls G protein coupled receptor (GPCR) signaling by acting as a GTPase-activating protein for heterotrimeric G proteins. Certain Rgs2 gene mutations have been linked to human hypertension. Renal RGS2 deficiency is sufficient to cause hypertension in mice; however, the pathological mechanisms are unknown. Here we determined how the loss of RGS2 affects renal function. We examined renal hemodynamics and tubular function by monitoring renal blood flow (RBF), glomerular filtration rate (GFR), epithelial sodium channel (ENaC) expression and localization, and pressure natriuresis in wild type (WT) and RGS2 null (RGS2-/-) mice. Pressure natriuresis was determined by stepwise increases in renal perfusion pressure (RPP) and blood flow, or by systemic blockade of nitric oxide synthase with L-NG-Nitroarginine methyl ester (L-NAME). Baseline GFR was markedly decreased in RGS2-/- mice compared to WT controls (5.0 ± 0.8 vs. 2.5 ± 0.1 µl/min/g body weight, p<0.01). RBF was reduced (35.4 ± 3.6 vs. 29.1 ± 2.1 µl/min/g body weight, p=0.08) while renal vascular resistance (RVR; 2.1 ± 0.2 vs. 3.0 ± 0.2 mmHg/µl/min/g body weight, p<0.01) was elevated in RGS2-/- compared to WT mice. RGS2 deficiency caused decreased sensitivity and magnitude of changes in RVR and RBF after a step increase in RPP. The acute pressure-natriuresis curve was shifted rightward in RGS2-/- relative to WT mice. Sodium excretion rate following increased RPP by L-NAME was markedly decreased in RGS2-/- mice and accompanied by increased translocation of ENaC to the luminal wall. We conclude that RGS2 deficiency impairs renal function and autoregulation by increasing renal vascular resistance and reducing renal blood flow. These changes impair renal sodium handling by favoring sodium retention. The findings provide a new line of evidence for renal dysfunction as a primary cause of hypertension.


Subject(s)
Hemodynamics/physiology , Kidney/blood supply , RGS Proteins/metabolism , Renal Circulation/physiology , Animals , Epithelial Sodium Channels/metabolism , Glomerular Filtration Rate/physiology , Kidney/metabolism , Mice , Mice, Knockout , NG-Nitroarginine Methyl Ester/pharmacology , Natriuresis/physiology , Nitric Oxide Synthase/metabolism , RGS Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...