Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Magn Reson Med ; 91(4): 1567-1575, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38044757

ABSTRACT

PURPOSE: To investigate spiral-based imaging including trajectories with undersampling as a fast and robust alternative for phase-based magnetic resonance electrical properties tomography (MREPT) techniques. METHODS: Spiral trajectories with various undersampling ratios were prescribed to acquire images from an experimental phantom and a healthy volunteer at 3T. The non-Cartesian acquisitions were reconstructed using SPIRiT, and conductivity maps were derived using phase-based cr-MREPT. The resulting maps were compared between different sampling trajectories. Additionally, a conductivity map was obtained using a Cartesian balanced SSFP acquisition from the volunteer to comparatively demonstrate the robustness of the proposed method. RESULTS: The phantom and volunteer results illustrate the benefits of the spiral acquisitions. Specifically, undersampled spiral acquisitions display improved robustness against field inhomogeneity artifacts and lowered SD values with shortened readout times. Furthermore, average of conductivity values measured for the cerebrospinal fluid with the spiral acquisitions were 1.703 S/m, indicating a close agreement with the theoretical values of 1.794 S/m. CONCLUSION: A spiral-based acquisition framework for conductivity imaging with and without undersampling is presented. Overall, spiral-based acquisitions improved robustness against field inhomogeneity artifacts, while achieving whole head coverage with multiple averages in less than a minute.


Subject(s)
Image Processing, Computer-Assisted , Magnetic Resonance Imaging , Humans , Feasibility Studies , Image Processing, Computer-Assisted/methods , Magnetic Resonance Imaging/methods , Tomography/methods , Phantoms, Imaging , Magnetic Resonance Spectroscopy
2.
Eur Radiol ; 2023 Nov 08.
Article in English | MEDLINE | ID: mdl-37940710

ABSTRACT

OBJECTIVES: To investigate the feasibility of non-contrast-enhanced functional lung imaging in 2-year-old children after congenital diaphragmatic hernia (CDH) repair. METHODS: Fifteen patients after CDH repair were examined using non-contrast-enhanced dynamic magnetic resonance imaging (MRI). For imaging two protocols were used during free-breathing: Protocol A with high temporal resolution and Protocol B with high spatial resolution. The dynamic images were then analysed through a recently developed post-processing method called dynamic mode decomposition (DMD) to obtain ventilation and perfusion maps. The ventilation ratios (VRatio) and perfusion ratios (QRatio) of ipsilateral to contralateral lung were compared to evaluate functional differences. Lastly, DMD MRI-based perfusion results were compared with perfusion parameters obtained using dynamic contrast-enhanced (DCE) MRI to assess agreement between methods. RESULTS: Both imaging protocols successfully generated pulmonary ventilation (V) and perfusion (Q) maps in all patients. Overall, the VRatio and QRatio values were 0.84 ± 0.19 and 0.70 ± 0.24 for Protocol A, and 0.88 ± 0.18 and 0.72 ± 0.23 for Protocol B, indicating reduced ventilation ([Formula: see text]) and perfusion ([Formula: see text]) on the ipsilateral side. Moreover, there is a very strong positive correlation ([Formula: see text]) and close agreement between DMD MRI-based perfusion values and DCE MRI-based perfusion parameters. CONCLUSIONS: DMD MRI can obtain pulmonary functional information in 2-year-old CDH patients. The results obtained with DMD MRI correlate with DCE MRI, without the need for ionising radiation or exposure to contrast agents. While further studies with larger cohorts are warranted, DMD MRI is a promising option for functional lung imaging in CDH patients. CLINICAL RELEVANCE STATEMENT: We demonstrate that pulmonary ventilation and perfusion information can be obtained in 2-year-old patients after CDH repair, without the need for ionising radiation or contrast agents by utilising non-contrast-enhanced MRI acquisitions together with dynamic mode decomposition analysis. KEY POINTS: • Non-contrast-enhanced functional MR imaging is a promising option for functional lung imaging in 2-year-old children after congenital diaphragmatic hernia. • DMD MRI can generate pulmonary ventilation and perfusion maps from free-breathing dynamic acquisitions without the need for ionising radiation or contrast agents. • Lung perfusion parameters obtained with DMD MRI correlate with perfusion parameters obtained using dynamic contrast-enhanced MRI.

3.
Magn Reson Med ; 90(2): 761-769, 2023 08.
Article in English | MEDLINE | ID: mdl-36989180

ABSTRACT

PURPOSE: To introduce dynamic mode decomposition (DMD) as a robust alternative for the assessment of pulmonary functional information from dynamic non-contrast-enhanced acquisitions. METHODS: Pulmonary fractional ventilation and normalized perfusion maps were obtained using DMD from simulated phantoms as well as in vivo dynamic acquisitions of healthy volunteers at 1.5T. The performance of DMD was compared with conventional Fourier decomposition (FD) and matrix pencil (MP) methods in estimating functional map values. The proposed method was evaluated based on estimated signal amplitude in functional maps across varying number of measurements. RESULTS: Quantitative assessments performed on phantoms and in vivo measurements indicate that DMD is capable of successfully obtaining pulmonary functional maps. Specifically, compared to FD and MP methods, DMD is able to reduce variations in estimated amplitudes across different number of measurements. This improvement is evident in the fractional ventilation and normalized perfusion maps obtain from phantom simulations with frequency variations and noise, as well as in the maps obtained from in vivo measurements. CONCLUSIONS: A robust method for accurately estimating pulmonary ventilation and perfusion related signal changes in dynamic acquisitions is presented. The proposed method uses DMD to obtain functional maps reliably, while reducing amplitude variations caused by differences in number of measurements.


Subject(s)
Lung , Magnetic Resonance Imaging , Humans , Fourier Analysis , Magnetic Resonance Imaging/methods , Lung/diagnostic imaging , Pulmonary Ventilation , Perfusion
5.
Magn Reson Med ; 88(4): 1764-1774, 2022 10.
Article in English | MEDLINE | ID: mdl-35608220

ABSTRACT

PURPOSE: To introduce phase-cycled balanced SSFP (bSSFP) acquisition as an alternative in Fourier decomposition MRI for improved robustness against field inhomogeneities. METHODS: Series 2D dynamic lung images were acquired in 5 healthy volunteers at 1.5 T and 3 T using bSSFP sequence with multiple RF phase increments and compared with conventional single RF phase increment acquisitions. The approach was evaluated based on functional map homogeneity analysis, while ensuring image and functional map quality by means of SNR and contrast-to-noise ratio analyses. RESULTS: At both field strengths, functional maps obtained with phase-cycled acquisitions displayed improved robustness against local signal losses compared with single-phase acquisitions. The coefficient of variation (mean ± SD, across volunteers) measured in the ventilation maps resulted in 29.7 ± 2.6 at 1.5 T and 37.5 ± 3.1 at 3 T for phase-cycled acquisitions, compared with 39.9 ± 5.2 at 1.5 T and 49.5 ± 3.7 at 3 T for single-phase acquisitions, indicating a significant improvement ( p<0.05$$ p<0.05 $$ ) in ventilation map homogeneity. CONCLUSIONS: Phase-cycled bSSFP acquisitions improve robustness against field inhomogeneity artifacts and significantly improve ventilation map homogeneity at both field strengths. As such, phase-cycled bSSFP may serve as a robust alternative in lung function assessments.


Subject(s)
Algorithms , Artifacts , Humans , Lung/diagnostic imaging , Magnetic Resonance Imaging/methods , Thorax
6.
Magn Reson Med ; 81(2): 934-946, 2019 02.
Article in English | MEDLINE | ID: mdl-30357891

ABSTRACT

PURPOSE: Balanced steady-state free precession (bSSFP) sequence is widely used because of its high SNR and high speed. However, bSSFP images suffer from "banding artifact" caused by B0 inhomogeneity. In this article, we propose a method to remove this artifact in bSSFP phase images and investigate the usage of the corrected phase images in phase-based magnetic resonance electrical properties tomography (MREPT). THEORY AND METHODS: Two bSSFP phase images, obtained with different excitation frequencies, are collaged to get rid of the regions containing banding artifacts. Phase of the collaged bSSFP image is the sum of the transceive phase of the RF system and an error term that depends on B0 and T2 . By using B0 and T2 maps, this error is eliminated from bSSFP phase images by using pixel-wise corrections. Conductivity maps are obtained from the uncorrected and the corrected phase images using the phase-based cr-MREPT method. RESULTS: Phantom and human experiment results of the proposed method are illustrated for both phase images and conductivity maps. It is shown that uncorrected phase images yield unacceptable conductivity images. When only B0 information is used for phase correction conductivity, reconstructions are substantially improved, and yet T2 information is still needed to fully recover accurate and undistorted conductivity images. CONCLUSIONS: With the proposed technique, B0 sensitivity of the bSSFP phase images can be removed by using B0 and T2 maps. It is also shown that corrected bSSFP phase images are of sufficient quality to be used in conductivity imaging.


Subject(s)
Artifacts , Brain/diagnostic imaging , Image Interpretation, Computer-Assisted/methods , Magnetic Resonance Imaging , Phantoms, Imaging , Adult , Algorithms , Brain Mapping , Computer Simulation , Healthy Volunteers , Humans , Image Enhancement/methods , Male , Radio Waves , Tomography, X-Ray Computed
SELECTION OF CITATIONS
SEARCH DETAIL
...