Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 65
Filter
1.
Int J Mol Sci ; 25(10)2024 May 12.
Article in English | MEDLINE | ID: mdl-38791315

ABSTRACT

LOX-1, ORL-1, or lectin-like oxidized low-density lipoprotein receptor 1 is a transmembrane glycoprotein that binds and internalizes ox-LDL in foam cells. LOX-1 is the main receptor for oxidized low-density lipoproteins (ox-LDL). The LDL comes from food intake and circulates through the bloodstream. LOX-1 belongs to scavenger receptors (SR), which are associated with various cardiovascular diseases. The most important and severe of these is the formation of atherosclerotic plaques in the intimal layer of the endothelium. These plaques can evolve into complicated thrombi with the participation of fibroblasts, activated platelets, apoptotic muscle cells, and macrophages transformed into foam cells. This process causes changes in vascular endothelial homeostasis, leading to partial or total obstruction in the lumen of blood vessels. This obstruction can result in oxygen deprivation to the heart. Recently, LOX-1 has been involved in other pathologies, such as obesity and diabetes mellitus. However, the development of atherosclerosis has been the most relevant due to its relationship with cerebrovascular accidents and heart attacks. In this review, we will summarize findings related to the physiologic and pathophysiological processes of LOX-1 to support the detection, diagnosis, and prevention of those diseases.


Subject(s)
Cardiovascular Diseases , Scavenger Receptors, Class E , Humans , Scavenger Receptors, Class E/metabolism , Scavenger Receptors, Class E/genetics , Cardiovascular Diseases/metabolism , Cardiovascular Diseases/etiology , Animals , Lipoproteins, LDL/metabolism , Atherosclerosis/metabolism , Atherosclerosis/pathology
2.
Sensors (Basel) ; 24(10)2024 May 10.
Article in English | MEDLINE | ID: mdl-38793882

ABSTRACT

In this work, we experimentally analyzed and demonstrated the performance of an in-line Mach-Zehnder interferometer in the visible region, with an LED light source. The different waist diameter taper and asymmetric core-offset interferometers proposed used a single-mode fiber (SMF). The visibility achieved was V = 0.14 with an FSR of 23 nm for the taper MZI structure and visibilities of V = 0.3, V = 0.27, and V = 0.34 with FSRs of 23 nm, 17 nm, and 8 nm and separation lengths L of 2.5 cm, 4.0 cm, and 5.0 cm between the core-offset structure, respectively. The experimental investigation of the response to the temperature sensor yielded values from 50 °C to 300 °C; the sensitivity obtained was 3.53 a.u./°C, with R2 of 0.99769 and 1% every 1 °C in the transmission. For a range of 50 °C to 150 °C, 20.3 pm/°C with a R2 of 0.96604 was obtained.

3.
Pharmaceuticals (Basel) ; 17(5)2024 May 09.
Article in English | MEDLINE | ID: mdl-38794175

ABSTRACT

Neutrophils, which constitute the most abundant leukocytes in human blood, emerge as crucial players in the induction of endothelial cell death and the modulation of endothelial cell responses under both physiological and pathological conditions. The hallmark of preeclampsia is endothelial dysfunction induced by systemic inflammation, in which neutrophils, particularly through the formation of neutrophil extracellular traps (NETs), play a pivotal role in the development and perpetuation of endothelial dysfunction and the hypertensive state. Considering the potential of numerous pharmaceutical agents to attenuate NET formation (NETosis) in preeclampsia, a comprehensive assessment of the extensively studied candidates becomes imperative. This review aims to identify mechanisms associated with the induction and negative regulation of NETs in the context of preeclampsia. We discuss potential drugs to modulate NETosis, such as NF-κß inhibitors, vitamin D, and aspirin, and their association with mutagenicity and genotoxicity. Strong evidence supports the notion that molecules involved in the activation of NETs could serve as promising targets for the treatment of preeclampsia.

5.
Int J Mol Sci ; 24(1)2023 Jan 03.
Article in English | MEDLINE | ID: mdl-36614306

ABSTRACT

Glycosylation is a post-translational modification that affects the stability, structure, antigenicity and charge of proteins. In the immune system, glycosylation is involved in the regulation of ligand-receptor interactions, such as in B-cell and T-cell activating receptors. Alterations in glycosylation have been described in several autoimmune diseases, such as systemic lupus erythematosus (SLE), in which alterations have been found mainly in the glycosylation of B lymphocytes, T lymphocytes and immunoglobulins. In immunoglobulin G of lupus patients, a decrease in galactosylation, sialylation, and nucleotide fucose, as well as an increase in the N-acetylglucosamine bisector, are observed. These changes in glycoisolation affect the interactions of immunoglobulins with Fc receptors and are associated with pericarditis, proteinuria, nephritis, and the presence of antinuclear antibodies. In T cells, alterations have been described in the glycosylation of receptors involved in activation, such as the T cell receptor; these changes affect the affinity with their ligands and modulate the binding to endogenous lectins such as galectins. In T cells from lupus patients, a decrease in galectin 1 binding is observed, which could favor activation and reduce apoptosis. Furthermore, these alterations in glycosylation correlate with disease activity and clinical manifestations, and thus have potential use as biomarkers. In this review, we summarize findings on glycosylation alterations in SLE and how they relate to immune system defects and their clinical manifestations.


Subject(s)
B-Lymphocytes , Immunoglobulin G , Lupus Erythematosus, Systemic , T-Lymphocytes , Humans , B-Lymphocytes/metabolism , Glycosylation , Lupus Erythematosus, Systemic/immunology , Lupus Erythematosus, Systemic/metabolism , T-Lymphocytes/metabolism
6.
Mol Cell Biochem ; 478(2): 361-362, 2023 Feb.
Article in English | MEDLINE | ID: mdl-35829869

ABSTRACT

Re. Re.: "Immunothrombotic dysregulation in Chagas disease (CD) and COVID-19: a comparative study of anticoagulation": In the commentary on our paper, Hasslocher-Moreno made the point that indeterminate and digestive forms are not related to thromboembolic events, only thrombogenic alterations occur in CD with cardiopathy, however there is indirect evidence related to thombotic alterations, such as cerebral thrombosis. Our assertion is based on previous data discussed in this letter.


Subject(s)
COVID-19 , Chagas Disease , Humans , Chagas Disease/drug therapy , Anticoagulants/pharmacology , Anticoagulants/therapeutic use
8.
Sci Rep ; 12(1): 17569, 2022 10 20.
Article in English | MEDLINE | ID: mdl-36266474

ABSTRACT

The Continuous bright light conditions to which premature infants are subjected while hospitalized in Neonatal Intensive Care Units (NICU) can have deleterious effects in terms of growth and development. This study evaluates the benefits of a light/darkness cycle (LDC) in weight and early hospital discharge from the NICU. Subjects were recruited from three participating institutions in Mexico. Eligible patients (n = 294) were premature infants who were hospitalized in the low-risk and high-risk neonatal units classified as stable. The subjects randomized to the experimental group (n = 150) were allocated to LDC conditions are as follows: light from 07:00 to 19:00 and darkness (25 lx) from 19:00 to 07:00. The control group (n = 144) was kept under normal room light conditions (CBL) 24 h a day. Main outcome was weight gain and the effect of reducing the intensity of nocturnal light in development of premature infants. Infants to the LDC gained weight earlier, compared with those randomized to CBL, and had a significant reduction in length of hospital stay. These results highlight those premature infants subjected to a LDC exhibit improvements in physiological development, favoring earlier weight gain and consequently a decrease in hospital stays. ClinicalTrials.gov; 02/09/2020 ID: NCT05230706.


Subject(s)
Infant, Premature, Diseases , Intensive Care Units, Neonatal , Humans , Infant, Newborn , Infant , Infant, Premature , Darkness , Infant, Low Birth Weight , Weight Gain
9.
Adv Clin Exp Med ; 31(12): 1309-1318, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36047897

ABSTRACT

BACKGROUND: The assessment of motor function is vital in post-stroke rehabilitation protocols, and it is imperative to obtain an objective and quantitative measurement of motor function. There are some innovative machine learning algorithms that can be applied in order to automate the assessment of upper extremity motor function. OBJECTIVES: To perform a systematic review and meta-analysis of the efficacy of machine learning algorithms for assessing upper limb motor function in post-stroke patients and compare these algorithms to clinical assessment. MATERIAL AND METHODS: The protocol was registered in the International Prospective Register of Systematic Reviews (PROSPERO) database. The review was carried out according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines and the Cochrane Handbook for Systematic Reviews of Interventions. The search was performed using 6 electronic databases. The meta-analysis was performed with the data from the correlation coefficients using a random model. RESULTS: The initial search yielded 1626 records, but only 8 studies fully met the eligibility criteria. The studies reported strong and very strong correlations between the algorithms tested and clinical assessment. The meta-analysis revealed a lack of homogeneity (I2 = 85.29%, Q = 48.15), which is attributable to the heterogeneity of the included studies. CONCLUSION: Automated systems using machine learning algorithms could support therapists in assessing upper extremity motor function in post-stroke patients. However, to draw more robust conclusions, methodological designs that minimize the risk of bias and increase the quality of the methodology of future studies are required.


Subject(s)
Motor Disorders , Stroke Rehabilitation , Stroke , Humans , Upper Extremity , Stroke Rehabilitation/methods , Paresis
10.
Int J Mol Sci ; 23(15)2022 Jul 27.
Article in English | MEDLINE | ID: mdl-35955411

ABSTRACT

Ageing is associated with changes in body composition, such as low muscle mass (sarcopenia), decreased grip strength or physical function (dynapenia), and accumulation of fat mass. When the accumulation of fat mass synergistically accompanies low muscle mass or reduced grip strength, it results in sarcopenic obesity and dynapenic obesity, respectively. These types of obesity contribute to the increased risk of cardiovascular disease and mortality in the elderly, which could increase the damage caused by COVID-19. In this review, we associated factors that could generate a higher risk of COVID-19 complications in dynapenic obesity and sarcopenic obesity. For example, skeletal muscle regulates the expression of inflammatory cytokines and supports metabolic stress in pulmonary disease; hence, the presence of dynapenic obesity or sarcopenic obesity could be related to a poor prognosis in COVID-19 patients.


Subject(s)
COVID-19 , Sarcopenia , Aged , Body Composition , COVID-19/complications , Hand Strength , Humans , Muscle Strength/physiology , Muscle, Skeletal , Obesity/complications , Sarcopenia/etiology
11.
Article in English | MEDLINE | ID: mdl-35564932

ABSTRACT

Burnout (BO) is a response to prolonged exposure to work-related stressors characterized by emotional exhaustion (EE), depersonalization (DP), and reduced personal accomplishment (PA). The police working environment includes continued critical life-threatening situations, violence, and injuries, among other related factors putting them at high risk of distress. The objective of this study was to evaluate the association between Burnout Syndrome and sociodemographic, occupational, and health factors in Mexican police officers. We applied the Maslach Burnout Inventory Human Services Survey (MBI-HSS) to 351 active members of the Mexican police workforce. In addition, a specific questionnaire identified the presence of chronic degenerative diseases, hypertension, diabetes, digestive diseases, self-perception of food quality, and hours of sleep. Furthermore, 23.36% of police workforces presented high levels of burnout; 44.16% of police were highly emotionally exhausted, 49.29% had lost empathy with people, and 41.03% presented low personal achievement. Moreover, the worst levels of the syndrome were present in people with a poor self-perceived health status, poor perception of diet quality, without regular mealtimes, bad sleep habits, and elevated Body Mass Index. Data suggest that in Mexican police officers, BO is dimensionally different from all other groups previously studied (DP > EE > PA).


Subject(s)
Burnout, Professional , Police , Burnout, Professional/epidemiology , Burnout, Professional/psychology , Burnout, Psychological , Humans , Police/psychology , Surveys and Questionnaires , Workforce
12.
Sci Rep ; 12(1): 4464, 2022 03 16.
Article in English | MEDLINE | ID: mdl-35296731

ABSTRACT

O-linked ß-N-acetylglucosaminylation (O-GlcNAcylation) is a reversible post-translational modification on serine and threonine residues of cytosolic, nuclear and mitochondrial proteins. O-GlcNAcylation level is regulated by OGT (O-GlcNAc transferase), which adds GlcNAc on proteins, and OGA (O-GlcNAcase), which removes it. Abnormal level of protein O-GlcNAcylation has been observed in numerous cancer cell types, including cervical cancer cells. In the present study, we have evaluated the effect of increasing protein O-GlcNAcylation on cervical cancer-derived CaSki cells. We observed that pharmacological enhancement of protein O-GlcNAcylation by Thiamet G (an inhibitor of OGA) and glucosamine (which provides UDP-GlcNAc substrate to OGT) increases CaSki cells proliferation, migration and survival. Moreover, we showed that increased O-GlcNAcylation promotes IGF-1 receptor (IGF1R) autophosphorylation, possibly through inhibition of protein tyrosine-phosphatase 1B activity. This was associated with increased IGF-1-induced phosphatidyl-Inositol 3-phosphate production at the plasma membrane and increased Akt activation in CaSki cells. Finally, we showed that protein O-GlcNAcylation and Akt phosphorylation levels were higher in human cervical cancer samples compared to healthy cervix tissues, and a highly positive correlation was observed between O-GlcNAcylation level and Akt phosphorylation in theses tissues. Together, our results indicate that increased O-GlcNAcylation, by activating IGF1R/ Phosphatidyl inositol 3-Kinase (PI-3K)/Akt signaling, may participate in cervical cancer cell growth and proliferation.


Subject(s)
Acetylglucosamine , Uterine Cervical Neoplasms , Acetylglucosamine/metabolism , Cervix Uteri/metabolism , Female , Humans , Inositol/metabolism , N-Acetylglucosaminyltransferases/genetics , Protein Processing, Post-Translational , Proto-Oncogene Proteins c-akt/metabolism , Receptor, IGF Type 1/metabolism , Uterine Cervical Neoplasms/metabolism
13.
Clin Breast Cancer ; 22(5): 399-409, 2022 07.
Article in English | MEDLINE | ID: mdl-35058144

ABSTRACT

Galectins are a family of proteins with affinity for ß-galactosides and their expression correlates with overall survival (OS) in several cancers. However, in breast cancer their prognostic potential is unclear. In this study we performed a meta-analysis to clarify the prognostic value of galectin expression in breast cancer and to identify sources of heterogeneity. For this purpose, we performed a search of related publications in PubMed, Central-Conchrane, Web of Science database, OVID-EMBASE, Scope and EBSCOhost until November 2021.Thirteen articles were included with a total of 2700 patients. High galectin expression was found not to correlate with OS in breast cancer (HR = 1.11, 95% CI 0.93-1.31). In the case of galectin-3, correlation with OS was observed when performing subgroup analysis by cellular localization (HR = 0.59, 95% CI 0.36-0.94 for cytoplasmic and HR = 1.82, 95% CI 1.00-3.29 for cytoplasmic plus nuclear). Galectin-7 correlates with DFS/PFS/DSS (HR = 2.43; 95% CI 1.36-4.31). Finally, galectin-3 correlates with some clinicopathological features such as lymph node metastasis, estrogen receptor expression and age. In conclusion, galectin-3 correlates with OS in breast cancer when cellular localization is considered while galectin-7 correlates with DFS/PFS/DSS. The cellular localization of galectins should be as fundamental aspect to be determined in future studies.


Subject(s)
Breast Neoplasms , Breast Neoplasms/pathology , Female , Galectin 3/metabolism , Galectins/metabolism , Humans , Prognosis , Receptors, Estrogen
15.
Biomolecules ; 11(11)2021 10 20.
Article in English | MEDLINE | ID: mdl-34827548

ABSTRACT

SARS-CoV-2 contains certain molecules that are related to the presence of immunothrombosis. Here, we review the pathogen and damage-associated molecular patterns. We also study the imbalance of different molecules participating in immunothrombosis, such as tissue factor, factors of the contact system, histones, and the role of cells, such as endothelial cells, platelets, and neutrophil extracellular traps. Regarding the pathogenetic mechanism, we discuss clinical trials, case-control studies, comparative and translational studies, and observational studies of regulatory or inhibitory molecules, more specifically, extracellular DNA and RNA, histones, sensors for RNA and DNA, as well as heparin and heparinoids. Overall, it appears that a network of cells and molecules identified in this axis is simultaneously but differentially affecting patients at different stages of COVID-19, and this is characterized by endothelial damage, microthrombosis, and inflammation.


Subject(s)
Alarmins , COVID-19/virology , SARS-CoV-2 , Thromboinflammation/virology , Thrombosis/virology , Angiotensin-Converting Enzyme 2/metabolism , Animals , Blood Coagulation , Blood Platelets/virology , COVID-19/complications , DNA/metabolism , Extracellular Traps , Heparin/metabolism , Histones/metabolism , Humans , Mice , Neuropilin-1/metabolism , RNA/metabolism , Signal Transduction , Thrombin/metabolism , Thromboplastin/metabolism , Thrombosis/complications
16.
Sci Rep ; 11(1): 22288, 2021 11 15.
Article in English | MEDLINE | ID: mdl-34782703

ABSTRACT

Numerous repositioned drugs have been sought to decrease the severity of SARS-CoV-2 infection. It is known that among its physicochemical properties, Ursodeoxycholic Acid (UDCA) has a reduction in surface tension and cholesterol solubilization, it has also been used to treat cholesterol gallstones and viral hepatitis. In this study, molecular docking was performed with the SARS-CoV-2 Spike protein and UDCA. In order to confirm this interaction, we used Molecular Dynamics (MD) in "SARS-CoV-2 Spike protein-UDCA". Using another system, we also simulated MD with six UDCA residues around the Spike protein at random, naming this "SARS-CoV-2 Spike protein-6UDCA". Finally, we evaluated the possible interaction between UDCA and different types of membranes, considering the possible membrane conformation of SARS-CoV-2, this was named "SARS-CoV-2 membrane-UDCA". In the "SARS-CoV-2 Spike protein-UDCA", we found that UDCA exhibits affinity towards the central region of the Spike protein structure of - 386.35 kcal/mol, in a region with 3 alpha helices, which comprises residues from K986 to C1032 of each monomer. MD confirmed that UDCA remains attached and occasionally forms hydrogen bonds with residues R995 and T998. In the presence of UDCA, we observed that the distances between residues atoms OG1 and CG2 of T998 in the monomers A, B, and C in the prefusion state do not change and remain at 5.93 ± 0.62 and 7.78 ± 0.51 Å, respectively, compared to the post-fusion state. Next, in "SARS-CoV-2 Spike protein-6UDCA", the three UDCA showed affinity towards different regions of the Spike protein, but only one of them remained bound to the region between the region's heptad repeat 1 and heptad repeat 2 (HR1 and HR2) for 375 ps of the trajectory. The RMSD of monomer C was the smallest of the three monomers with a value of 2.89 ± 0.32, likewise, the smallest RMSF was also of the monomer C (2.25 ± 056). In addition, in the simulation of "SARS-CoV-2 membrane-UDCA", UDCA had a higher affinity toward the virion-like membrane; where three of the four residues remained attached once they were close (5 Å, to the centre of mass) to the membrane by 30 ns. However, only one of them remained attached to the plasma-like membrane and this was in a cluster of cholesterol molecules. We have shown that UDCA interacts in two distinct regions of Spike protein sequences. In addition, UDCA tends to stay bound to the membrane, which could potentially reduce the internalization of SARS-CoV-2 in the host cell.


Subject(s)
Antiviral Agents/metabolism , Drug Repositioning/methods , Lipid Bilayers/metabolism , Molecular Docking Simulation/methods , Phospholipids/metabolism , Spike Glycoprotein, Coronavirus/metabolism , Ursodeoxycholic Acid/metabolism , Antiviral Agents/chemistry , COVID-19/metabolism , COVID-19/virology , Humans , Hydrogen Bonding , Membrane Fusion , Molecular Dynamics Simulation , Protein Binding , Protein Conformation, alpha-Helical , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/chemistry , Ursodeoxycholic Acid/chemistry , Virion/metabolism
17.
Bioorg Med Chem ; 48: 116417, 2021 10 15.
Article in English | MEDLINE | ID: mdl-34571489

ABSTRACT

Chagas disease is a health problem that affects millions of persons, currently Nifurtimox (Nfx) and Benznidazole (Bz) are the unique drugs to treat it. However, these drugs produce adverse effects and high toxicity, which has motivated the search for new candidate drugs. Based on reports about the extensive biological activity of steroidal nitrate esters, in this study three nitrate esters steroids (1b, 2b and 4b) were synthetized and characterized from Dehydroepiandrosterone (DHEA, 1a), 19-hydroxy-DHEA (2a), and Androst-5-en-3ß,17ß-diol (4a), respectively. In addition, compounds 3a and 3b were obtained by introducing an α-ethynyl and a ß-hydroxyl groups at position 17 of 2b and further nitration of the hydroxyl group. The trypanocidal activity of these steroids was evaluated in vitro against the epimastigote stage of two T. cruzi strains, Ninoa and TH, and their cytotoxicity over J774.2 macrophage cell line was assayed. Compounds 3a, 3b, and 4a shown higher trypanocidal activity than Bz and Nfx against epimastigotes of Ninoa strain, whereas DHEA (1a) and its nitrate derivative 1b showed higher activity than the reference drugs against the TH strain epimastigote. None of the compounds showed activity in the ex vivo assays against the blood trypomastigote of both strains. Interestingly, the selectivity index of Androst-5-en-3ß,17ß-diol 4a was almost twice the value of Nfx and 50 times more than Bz, against Ninoa and TH strains, respectively. Therefore, compound 4a could represent a valuable starting point toward the optimization of steroid derivatives as trypanocidal agents.


Subject(s)
Dehydroepiandrosterone/pharmacology , Nitrates/pharmacology , Trypanocidal Agents/pharmacology , Trypanosoma cruzi/drug effects , Animals , Cell Line , Dehydroepiandrosterone/chemical synthesis , Dehydroepiandrosterone/chemistry , Dose-Response Relationship, Drug , Mexico , Mice , Molecular Structure , Nitrates/chemical synthesis , Nitrates/chemistry , Parasitic Sensitivity Tests , Structure-Activity Relationship , Trypanocidal Agents/chemical synthesis , Trypanocidal Agents/chemistry
18.
Biosensors (Basel) ; 11(3)2021 Feb 25.
Article in English | MEDLINE | ID: mdl-33669087

ABSTRACT

Diabetes mellitus is a chronic metabolic disorder, being globally one of the most deadly diseases. This disease requires continually monitoring of the body's glucose levels. There are different types of sensors for measuring glucose, most of them invasive to the patient. Fiber optic sensors have been proven to have advantages compared to conventional sensors and they have great potential for various applications, especially in the biomedical area. Compared to other sensors, they are smaller, easy to handle, mostly non-invasive, thus leading to a lower risk of infection, high precision, well correlated and inexpensive. The objective of this review article is to compare different types of fiber optic sensors made with different experimental techniques applied to biomedicine, especially for glucose sensing. Observations are made on the way of elaboration, as well as the advantages and disadvantages that each one could have in real applications.


Subject(s)
Biosensing Techniques , Glucose/analysis , Fiber Optic Technology , Humans , Optical Fibers
19.
Front Immunol ; 12: 621311, 2021.
Article in English | MEDLINE | ID: mdl-33717121

ABSTRACT

Extracellular DNA traps (ETs) are evolutionarily conserved antimicrobial mechanisms present in protozoa, plants, and animals. In this review, we compare their similarities in species of different taxa, and put forward the hypothesis that ETs have multiple origins. Our results are consistent with a process of evolutionary convergence in multicellular organisms through the application of a congruency test. Furthermore, we discuss why multicellularity is related to the presence of a mechanism initiating the formation of ETs.


Subject(s)
Extracellular Traps/metabolism , Neutrophils/immunology , Animals , Biological Evolution , Humans , Immunity, Innate , Phylogeny
20.
Viral Immunol ; 34(3): 165-173, 2021 04.
Article in English | MEDLINE | ID: mdl-33605822

ABSTRACT

The current pandemic is caused by the coronavirus disease 2019 (COVID-19), which is, in turn, induced by a novel coronavirus (SARS-CoV-2) that triggers an acute respiratory disease. In recent years, the emergence of SARS-CoV-2 is the third highly pathogenic event and large-scale epidemic affecting the human population. It follows the severe acute respiratory syndrome coronavirus (SARS-CoV) in 2003 and the Middle East respiratory syndrome coronavirus (MERS-CoV) in 2012. This novel SARS-CoV-2 employs the angiotensin-converting enzyme 2 (ACE2) receptor, like SARS-CoV, and spreads principally in the respiratory tract. The viral spike (S) protein of coronaviruses facilities the attachment to the cellular receptor, entrance, and membrane fusion. The S protein is a glycoprotein and is critical to elicit an immune response. Glycosylation is a biologically significant post-translational modification in virus surface proteins. These glycans play important roles in the viral life cycle, structure, immune evasion, and cell infection. However, it is necessary to search for new information about viral behavior and immunological host's response after SARS-CoV-2 infection. The present review discusses the implications of the CoV-2 S protein glycosylation in the SARS-CoV-2/ACE2 interaction and the immunological response. Elucidation of the glycan repertoire on the spike protein can propel research for the development of an appropriate vaccine.


Subject(s)
Angiotensin-Converting Enzyme 2/physiology , COVID-19/immunology , SARS-CoV-2/physiology , Spike Glycoprotein, Coronavirus/physiology , Glycosylation , Humans , SARS-CoV-2/chemistry , SARS-CoV-2/genetics
SELECTION OF CITATIONS
SEARCH DETAIL