Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Eur J Hum Genet ; 32(7): 858-863, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38778080

ABSTRACT

The ABC and ACMG variant classification systems were compared by asking mainly European clinical laboratories to classify variants in 10 challenging cases using both systems, and to state if the variant in question would be reported as a relevant result or not as a measure of clinical utility. In contrast to the ABC system, the ACMG system was not made to guide variant reporting but to determine the likelihood of pathogenicity. Nevertheless, this comparison is justified since the ACMG class determines variant reporting in many laboratories. Forty-three laboratories participated in the survey. In seven cases, the classification system used did not influence the reporting likelihood when variants labeled as "maybe report" after ACMG-based classification were included. In three cases of population frequent but disease-associated variants, there was a difference in favor of reporting after ABC classification. A possible reason is that ABC step C (standard variant comments) allows a variant to be reported in one clinical setting but not another, e.g., based on Bayesian-based likelihood calculation of clinical relevance. Finally, the selection of ACMG criteria was compared between 36 laboratories. When excluding criteria used by less than four laboratories (<10%), the average concordance rate was 46%. Taken together, ABC-based classification is more clear-cut than ACMG-based classification since molecular and clinical information is handled separately, and variant reporting can be adapted to the clinical question and phenotype. Furthermore, variants do not get a clinically inappropriate label, like pathogenic when not pathogenic in a clinical context, or variant of unknown significance when the significance is known.


Subject(s)
Genetic Variation , Humans , Genetic Testing/standards , Genetic Testing/methods
2.
Pediatr Dev Pathol ; 27(2): 181-186, 2024.
Article in English | MEDLINE | ID: mdl-37981638

ABSTRACT

Coffin-Siris syndrome is an autosomal dominant disorder with neurological, cardiovascular, and gastrointestinal symptoms. Patients with Coffin-Siris syndrome typically have variable degree of developmental delay or intellectual disability, muscular hypotonia, dysmorphic facial features, sparse scalp hair, but otherwise hirsutism and fifth digit nail or distal phalanx hypoplasia or aplasia. Coffin-Siris syndrome is caused by pathogenic variants in 12 different genes including SMARCB1 and ARID1A. Pathogenic SMARCB1 gene variants cause Coffin-Siris syndrome 3 whereas pathogenic ARID1A gene variants cause Coffin-Siris syndrome 2. Here, we present two prenatal Coffin-Siris syndrome cases with autosomal dominant pathogenic variants: SMARCB1 gene c.1066_1067del, p.(Leu356AspfsTer4) variant, and a novel ARID1A gene c.1920+3_1920+6del variant. The prenatal phenotype in Coffin-Siris syndrome has been rarely described. This article widens the phenotypic spectrum of prenatal Coffin-Siris syndrome with severely hypoplastic right ventricle with VSD and truncus arteriosus type III, persisting left superior and inferior caval vein, bilateral olfactory nerve aplasia, and hypoplastic thymus. A detailed clinical description of the patients with ultrasound, MRI, and post mortem pictures of the affected fetuses showing the wide phenotypic spectrum of the disease is presented.


Subject(s)
Abnormalities, Multiple , Face/abnormalities , Hand Deformities, Congenital , Intellectual Disability , Micrognathism , Neck/abnormalities , Humans , Intellectual Disability/diagnosis , Intellectual Disability/genetics , Intellectual Disability/pathology , Abnormalities, Multiple/diagnosis , Abnormalities, Multiple/genetics , Abnormalities, Multiple/pathology , Face/pathology , Phenotype
3.
Hum Mol Genet ; 27(24): 4288-4302, 2018 12 15.
Article in English | MEDLINE | ID: mdl-30239752

ABSTRACT

The development of tissue fibrosis is complex and at the present time, not fully understood. Fibrosis, neurodegeneration and cerebral angiomatosis (FINCA disease) have been described in patients with mutations in NHL repeat-containing protein 2 (NHLRC2). However, the molecular functions of NHLRC2 are uncharacterized. Herein, we identified putative interacting partners for NHLRC2 using proximity-labeling mass spectrometry. We also investigated the function of NHLRC2 using immortalized cells cultured from skin biopsies of FINCA patients and normal fibroblasts with NHLRC2 knock-down and NHLRC2 overexpressing gene modifications. Transmission electron microscopy analysis of immortalized cell cultures from three FINCA patients demonstrated multilamellar bodies and distinctly organized vimentin filaments. Additionally, two of three cultures derived from patient skin biopsies contained cells that exhibited features characteristic of myofibroblasts. Altogether, the data presented in this study show for the first time that NHLRC2 is involved in cellular organization through regulation of the cytoskeleton and vesicle transport. We conclude that compound heterozygous p.Asp148Tyr and p.Arg201GlyfsTer6 mutations in NHLRC2 lead to severe tissue fibrosis in humans by enhancing the differentiation of fibroblasts to myofibroblasts.


Subject(s)
Angiomatosis/pathology , Brain Diseases/pathology , Intracellular Signaling Peptides and Proteins/metabolism , Myofibroblasts/pathology , Nerve Degeneration/genetics , Actins/genetics , Angiomatosis/genetics , Brain Diseases/genetics , Cell Differentiation/genetics , Cells, Cultured , Fibrosis , Humans , Intracellular Signaling Peptides and Proteins/genetics , Mutation/genetics , Myofibroblasts/metabolism , Skin/metabolism , Skin/pathology
4.
Mol Cancer Res ; 16(6): 1000-1012, 2018 06.
Article in English | MEDLINE | ID: mdl-29545478

ABSTRACT

Recent studies suggest that the ubiquitin-specific protease USP28 plays an important role in cellular repair and tissue remodeling, which implies that it has a direct role in carcinogenesis. The carcinogenic potential of USP28 was investigated in a comprehensive manner using patients, animal models, and cell culture. The findings demonstrate that overexpression of USP28 correlates with a better survival in patients with invasive ductal breast carcinoma. Mouse xenograft experiments with USP28-deficient breast cancer cells also support this view. Furthermore, lack of USP28 promotes a more malignant state of breast cancer cells, indicated by an epithelial-to-mesenchymal (EMT) transition, elevated proliferation, migration, and angiogenesis as well as a decreased adhesion. In addition to breast cancer, lack of USP28 in mice promoted an earlier onset and a more severe tumor formation in a chemical-induced liver cancer model. Mechanistically, the angio- and carcinogenic processes driven by the lack of USP28 appeared to be independent of HIF-1α, p53, and 53BP1.Implications: The findings of this study are not limited to one particular type of cancer but are rather applicable for carcinogenesis in a more general manner. The obtained data support the view that USP28 is involved in tumor suppression and has the potential to be a prognostic marker. Mol Cancer Res; 16(6); 1000-12. ©2018 AACR.


Subject(s)
Breast Neoplasms/blood supply , Breast Neoplasms/genetics , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Liver Neoplasms/blood supply , Liver Neoplasms/genetics , Ubiquitin Thiolesterase/deficiency , Adult , Aged , Aged, 80 and over , Animals , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Cell Line, Tumor , Disease Models, Animal , Female , Humans , Liver Neoplasms/metabolism , Liver Neoplasms/pathology , Mice , Mice, Knockout , Middle Aged , Neovascularization, Pathologic/genetics , Neovascularization, Pathologic/metabolism , Ubiquitin Thiolesterase/metabolism
5.
Acta Neuropathol ; 135(5): 727-742, 2018 05.
Article in English | MEDLINE | ID: mdl-29423877

ABSTRACT

A novel multi-organ disease that is fatal in early childhood was identified in three patients from two non-consanguineous families. These children were born asymptomatic but at the age of 2 months they manifested progressive multi-organ symptoms resembling no previously known disease. The main clinical features included progressive cerebropulmonary symptoms, malabsorption, progressive growth failure, recurrent infections, chronic haemolytic anaemia and transient liver dysfunction. In the affected children, neuropathology revealed increased angiomatosis-like leptomeningeal, cortical and superficial white matter vascularisation and congestion, vacuolar degeneration and myelin loss in white matter, as well as neuronal degeneration. Interstitial fibrosis and previously undescribed granuloma-like lesions were observed in the lungs. Hepatomegaly, steatosis and collagen accumulation were detected in the liver. A whole-exome sequencing of the two unrelated families with the affected children revealed the transmission of two heterozygous variants in the NHL repeat-containing protein 2 (NHLRC2); an amino acid substitution p.Asp148Tyr and a frameshift 2-bp deletion p.Arg201GlyfsTer6. NHLRC2 is highly conserved and expressed in multiple organs and its function is unknown. It contains a thioredoxin-like domain; however, an insulin turbidity assay on human recombinant NHLRC2 showed no thioredoxin activity. In patient-derived fibroblasts, NHLRC2 levels were low, and only p.Asp148Tyr was expressed. Therefore, the allele with the frameshift deletion is likely non-functional. Development of the Nhlrc2 null mouse strain stalled before the morula stage. Morpholino knockdown of nhlrc2 in zebrafish embryos affected the integrity of cells in the midbrain region. This is the first description of a fatal, early-onset disease; we have named it FINCA disease based on the combination of pathological features that include fibrosis, neurodegeneration, and cerebral angiomatosis.


Subject(s)
Angiomatosis/genetics , Brain Diseases/genetics , Genetic Variation , Intracellular Signaling Peptides and Proteins/genetics , Neurodegenerative Diseases/genetics , Pulmonary Fibrosis/genetics , Angiomatosis/pathology , Angiomatosis/physiopathology , Animals , Animals, Genetically Modified , Brain/metabolism , Brain/pathology , Brain Diseases/pathology , Brain Diseases/physiopathology , Cells, Cultured , Family , Fatal Outcome , Humans , Infant , Intracellular Signaling Peptides and Proteins/metabolism , Liver Diseases/genetics , Liver Diseases/pathology , Liver Diseases/physiopathology , Male , Mice, Inbred C57BL , Neurodegenerative Diseases/pathology , Neurodegenerative Diseases/physiopathology , Prospective Studies , Pulmonary Fibrosis/pathology , Pulmonary Fibrosis/physiopathology , Syndrome , Zebrafish , Zebrafish Proteins/genetics , Zebrafish Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL