Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Biopharm Drug Dispos ; 38(2): 94-114, 2017 Mar.
Article in English | MEDLINE | ID: mdl-28214380

ABSTRACT

A major component of physiologically based pharmacokinetic (PBPK) models is the prediction of the rate and extent of absorption of orally dosed drugs for which knowledge of effective passive intestinal permeability (Peff ) is essential. Single-pass intestinal perfusion (SPIP) studies are used to establish effective permeability in vivo but are difficult to perform in rodents, while mechanistic models to predict drug Peff in rat and mouse have not been published. This work evaluates the predictive performance of the 'MechPeff' model to predict Peff in the rodent intestine based upon knowledge of regional gut physiology and drug-specific physicochemical parameters. The 'MechPeff' model, built-in to the Simcyp Rat and Mouse Simulators, predicts transcellular, paracellular and mucus layer permeabilities and combines these to give the overall Peff . The jejunal and/or ileal Peff was predicted for 12 (4) acidic, 13 (12) basic, 10 (8) neutral and 2 (0) ampholytic drugs in the rat (mouse), spanning a wide range of MW and logPo:w , and compared with experimental Peff obtained using SPIP. A key input is the intrinsic transcellular permeability (Ptrans,0 ) which can be derived from modelling of appropriate in vitro permeability experiments or predicted from physicochemical properties. The Peff predictions were reasonably good when experimentally derived Ptrans,0 was used; from 42 Peff,rat values, 24 (57%) were within 3-fold, and of 19 Peff,mouse values, 12 (63%) were within 3-fold, of observed Peff . Considering the lack of alternative models to predict Peff in preclinical species, and the minimal drug-specific inputs required, this model provides a valuable tool within drug discovery and development programmes. Copyright © 2017 John Wiley & Sons, Ltd.


Subject(s)
Colon/metabolism , Drug Discovery/methods , Intestinal Absorption , Intestinal Mucosa/metabolism , Intestine, Small/metabolism , Models, Biological , Pharmaceutical Preparations/metabolism , Pharmacokinetics , Administration, Oral , Animals , Colon/anatomy & histology , Diffusion , High-Throughput Screening Assays , Intestinal Mucosa/anatomy & histology , Intestine, Small/anatomy & histology , Mice , Permeability , Pharmaceutical Preparations/administration & dosage , Rats, Sprague-Dawley , Reproducibility of Results
2.
Article in English | MEDLINE | ID: mdl-23903405

ABSTRACT

An increasing prevalence of morbid obesity has led to dramatic increases in the number of bariatric surgeries performed. Altered gastrointestinal physiology following surgery can be associated with modified oral drug bioavailability (Foral). In the absence of clinical data, an indication of changes to Foral via systems pharmacology models would be of value in adjusting dose levels after surgery. A previously developed virtual "post-bariatric surgery" population was evaluated through mimicking clinical investigations on cyclosporine and atorvastatin after bariatric surgery. Cyclosporine simulations displayed a reduced fraction absorbed through gut wall (fa) and Foral after surgery, consistent with reported observations. Simulated atorvastatin Foral postsurgery was broadly reflective of observed data with indications of counteracting interplay between reduced fa and an increased fraction escaping gut wall metabolism (FG). Inability to fully recover observed atorvastatin exposure after biliopancreatic diversion with duodenal switch highlights the current gap regarding the knowledge of associated biological changes.CPT: Pharmacometrics & Systems Pharmacology (2013) 2, e47; doi:10.1038/psp.2013.23; advance online publication 12 June 2013.

SELECTION OF CITATIONS
SEARCH DETAIL
...