Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Sci Data ; 10(1): 471, 2023 07 20.
Article in English | MEDLINE | ID: mdl-37474611

ABSTRACT

In-situ marine cloud droplet number concentrations (CDNCs), cloud condensation nuclei (CCN), and CCN proxies, based on particle sizes and optical properties, are accumulated from seven field campaigns: ACTIVATE; NAAMES; CAMP2EX; ORACLES; SOCRATES; MARCUS; and CAPRICORN2. Each campaign involves aircraft measurements, ship-based measurements, or both. Measurements collected over the North and Central Atlantic, Indo-Pacific, and Southern Oceans, represent a range of clean to polluted conditions in various climate regimes. With the extensive range of environmental conditions sampled, this data collection is ideal for testing satellite remote detection methods of CDNC and CCN in marine environments. Remote measurement methods are vital to expanding the available data in these difficult-to-reach regions of the Earth and improving our understanding of aerosol-cloud interactions. The data collection includes particle composition and continental tracers to identify potential contributing CCN sources. Several of these campaigns include High Spectral Resolution Lidar (HSRL) and polarimetric imaging measurements and retrievals that will be the basis for the next generation of space-based remote sensors and, thus, can be utilized as satellite surrogates.

2.
Geophys Res Lett ; 48(19)2021 Oct 16.
Article in English | MEDLINE | ID: mdl-34776556

ABSTRACT

The warm Gulf Stream sea surface temperatures strongly impact the evolution of winter clouds behind atmospheric cold fronts. Such cloud evolution remains challenging to model. The Gulf Stream is too wide within the ERA5 and MERRA2 reanalyses, affecting the turbulent surface fluxes. Known problems within the ERA5 boundary layer (too-dry and too-cool with too strong westerlies), ascertained primarily from ACTIVATE 2020 campaign aircraft dropsondes and secondarily from older buoy measurements, reinforce surface flux biases. In contrast, MERRA2 winter surface winds and air-sea temperature/humidity differences are slightly too weak, producing surface fluxes that are too low. Reanalyses boundary layer heights in the strongly forced winter cold-air-outbreak regime are realistic, whereas late-summer quiescent stable boundary layers are too shallow. Nevertheless, the reanalysis biases are small, and reanalyses adequately support their use for initializing higher-resolution cloud process modeling studies of cold-air outbreaks.

3.
J Geophys Res Atmos ; 126(20)2021 Oct 27.
Article in English | MEDLINE | ID: mdl-34777928

ABSTRACT

Biomass burning (BB) aerosol events were characterized over the U.S. East Coast and Bermuda over the western North Atlantic Ocean (WNAO) between 2005 and 2018 using a combination of ground-based observations, satellite data, and model outputs. Days with BB influence in an atmospheric column (BB days) were identified using criteria biased toward larger fire events based on anomalously high AERONET aerosol optical depth (AOD) and MERRA-2 black carbon (BC) column density. BB days are present year-round with more in June-August (JJA) over the northern part of the East Coast, in contrast to more frequent events in March-May (MAM) over the southeast U.S. and Bermuda. BB source regions in MAM are southern Mexico and by the Yucatan, Central America, and the southeast U.S. JJA source regions are western parts of North America. Less than half of the BB days coincide with anomalously high PM2.5 levels in the surface layer, according to data from 14 IMPROVE sites over the East Coast. Profiles of aerosol extinction suggest that BB particles can be found in the boundary layer and into the upper troposphere with the potential to interact with clouds. Higher cloud drop number concentration and lower drop effective radius are observed during BB days. In addition, lower liquid water path is found during these days, especially when BB particles are present in the boundary layer. While patterns are suggestive of cloud-BB aerosol interactions over the East Coast and the WNAO, additional studies are needed for confirmation.

4.
Atmos Chem Phys ; 21(13): 10499-10526, 2021 Jul.
Article in English | MEDLINE | ID: mdl-34377145

ABSTRACT

Cloud drop number concentrations (N d) over the western North Atlantic Ocean (WNAO) are generally highest during the winter (DJF) and lowest in summer (JJA), in contrast to aerosol proxy variables (aerosol optical depth, aerosol index, surface aerosol mass concentrations, surface cloud condensation nuclei (CCN) concentrations) that generally peak in spring (MAM) and JJA with minima in DJF. Using aircraft, satellite remote sensing, ground-based in situ measurement data, and reanalysis data, we characterize factors explaining the divergent seasonal cycles and furthermore probe into factors influencing N d on seasonal timescales. The results can be summarized well by features most pronounced in DJF, including features associated with cold-air outbreak (CAO) conditions such as enhanced values of CAO index, planetary boundary layer height (PBLH), low-level liquid cloud fraction, and cloud-top height, in addition to winds aligned with continental outflow. Data sorted into high- and low-N d days in each season, especially in DJF, revealed that all of these conditions were enhanced on the high-N d days, including reduced sea level pressure and stronger wind speeds. Although aerosols may be more abundant in MAM and JJA, the conditions needed to activate those particles into cloud droplets are weaker than in colder months, which is demonstrated by calculations of the strongest (weakest) aerosol indirect effects in DJF (JJA) based on comparing N d to perturbations in four different aerosol proxy variables (total and sulfate aerosol optical depth, aerosol index, surface mass concentration of sulfate). We used three machine learning models and up to 14 input variables to infer about most influential factors related to N d for DJF and JJA, with the best performance obtained with gradient-boosted regression tree (GBRT) analysis. The model results indicated that cloud fraction was the most important input variable, followed by some combination (depending on season) of CAO index and surface mass concentrations of sulfate and organic carbon. Future work is recommended to further understand aspects uncovered here such as impacts of free tropospheric aerosol entrainment on clouds, degree of boundary layer coupling, wet scavenging, and giant CCN effects on aerosol-N d relationships, updraft velocity, and vertical structure of cloud properties such as adiabaticity that impact the satellite estimation of N d.

5.
J Geophys Res Atmos ; 126(4)2021 Feb 27.
Article in English | MEDLINE | ID: mdl-34211820

ABSTRACT

The Western North Atlantic Ocean (WNAO) and adjoining East Coast of North America are of great importance for atmospheric research and have been extensively studied for several decades. This broad region exhibits complex meteorological features and a wide range of conditions associated with gas and particulate species from many sources regionally and other continents. As Part 1 of a 2-part paper series, this work characterizes quantities associated with atmospheric chemistry, including gases, aerosols, and wet deposition, by analyzing available satellite observations, ground-based data, model simulations, and reanalysis products. Part 2 provides insight into the atmospheric circulation, boundary layer variability, three-dimensional cloud structure, properties, and precipitation over the WNAO domain. Key results include spatial and seasonal differences in composition along the North American East Coast and over the WNAO associated with varying sources of smoke and dust and meteorological drivers such as temperature, moisture, and precipitation. Spatial and seasonal variations of tropospheric carbon monoxide and ozone highlight different pathways toward the accumulation of these species in the troposphere. Spatial distributions of speciated aerosol optical depth and vertical profiles of aerosol mass mixing ratios show a clear seasonal cycle highlighting the influence of different sources in addition to the impact of intercontinental transport. Analysis of long-term climate model simulations of aerosol species and satellite observations of carbon monoxide confirm that there has been a significant decline in recent decades among anthropogenic constituents owing to regulatory activities.

6.
J Geophys Res Atmos ; 126(9)2021 May 16.
Article in English | MEDLINE | ID: mdl-34159044

ABSTRACT

Aerosol characteristics and aerosol-cloud interactions remain uncertain in remote marine regions. We use over a decade of data (2000-2012) from the NASA AErosol RObotic NETwork, aerosol and wet deposition samples, satellite remote sensors, and models to examine aerosol and cloud droplet number characteristics at a representative open ocean site (Bermuda) over the Western North Atlantic Ocean (WNAO). Annual mean values were as follows: aerosol optical depth (AOD) = 0.12, Ångström Exponent (440/870 nm) = 0.95, fine mode fraction = 0.51, asymmetry factor = 0.72 (440 nm) and 0.68 (1020 nm), and Aqua-MODIS cloud droplet number concentrations = 51.3 cm-3. The winter season (December-February) was characterized by high sea salt optical thickness and the highest aerosol extinction in the lowest 2 km. Extensive precipitation over the WNAO in winter helps contribute to the low FMFs in winter (~0.40-0.50) even though air trajectories often originate over North America. Spring and summer had more pronounced influence from sulfate, dust, organic carbon, and black carbon. Volume size distributions were bimodal with a dominant coarse mode (effective radii: 1.85-2.09 µm) and less pronounced fine mode (0.14-0.16 µm), with variability in the coarse mode likely due to different characteristic sizes for transported dust (smaller) versus regional sea salt (larger). Extreme pollution events highlight the sensitivity of this site to long-range transport of urban emissions, dust, and smoke. Differing annual cycles are identified between AOD and cloud droplet number concentrations, motivating a deeper look into aerosol-cloud interactions at this site.

7.
J Geophys Res Atmos ; 125(6)2020 Mar 27.
Article in English | MEDLINE | ID: mdl-32699733

ABSTRACT

Decades of atmospheric research have focused on the Western North Atlantic Ocean (WNAO) region because of its unique location that offers accessibility for airborne and ship measurements, gradients in important atmospheric parameters, and a range of meteorological regimes leading to diverse conditions that are poorly understood. This work reviews these scientific investigations for the WNAO region, including the East Coast of North America and the island of Bermuda. Over 50 field campaigns and long-term monitoring programs, in addition to 715 peer-reviewed publications between 1946 and 2019 have provided a firm foundation of knowledge for these areas. Of particular importance in this region has been extensive work at the island of Bermuda that is host to important time series records of oceanic and atmospheric variables. Our review categorizes WNAO atmospheric research into eight major categories, with some studies fitting into multiple categories (relative %): Aerosols (25%), Gases (24%), Development/Validation of Techniques, Models, and Retrievals (18%), Meteorology and Transport (9%), Air-Sea Interactions (8%), Clouds/Storms (8%), Atmospheric Deposition (7%), and Aerosol-Cloud Interactions (2%). Recommendations for future research are provided in the categories highlighted above.

9.
Rev Geophys ; 56(2): 409-453, 2018 Jun.
Article in English | MEDLINE | ID: mdl-30148283

ABSTRACT

The cloud droplet number concentration (N d) is of central interest to improve the understanding of cloud physics and for quantifying the effective radiative forcing by aerosol-cloud interactions. Current standard satellite retrievals do not operationally provide N d, but it can be inferred from retrievals of cloud optical depth (τ c) cloud droplet effective radius (r e) and cloud top temperature. This review summarizes issues with this approach and quantifies uncertainties. A total relative uncertainty of 78% is inferred for pixel-level retrievals for relatively homogeneous, optically thick and unobscured stratiform clouds with favorable viewing geometry. The uncertainty is even greater if these conditions are not met. For averages over 1° ×1° regions the uncertainty is reduced to 54% assuming random errors for instrument uncertainties. In contrast, the few evaluation studies against reference in situ observations suggest much better accuracy with little variability in the bias. More such studies are required for a better error characterization. N d uncertainty is dominated by errors in r e, and therefore, improvements in r e retrievals would greatly improve the quality of the N d retrievals. Recommendations are made for how this might be achieved. Some existing N d data sets are compared and discussed, and best practices for the use of N d data from current passive instruments (e.g., filtering criteria) are recommended. Emerging alternative N d estimates are also considered. First, new ideas to use additional information from existing and upcoming spaceborne instruments are discussed, and second, approaches using high-quality ground-based observations are examined.

10.
Geophys Res Lett ; 45(17): 9288-9296, 2018 Sep 16.
Article in English | MEDLINE | ID: mdl-33414572

ABSTRACT

15 years of Aqua CERES and MODIS observations are combined to derive nearly global maps of shortwave albedo (A) and flux (F) response to changes in cloud droplet number concentration (Nd ). Absolute ( S a = ∂ A ∂ N d ) and relative ( S r = ∂ A ∂ ln ( N d ) ) albedo susceptibilities are computed seasonally by exploiting the linear relationship between A and ln(Nd ) for shallow liquid clouds. Subtropical stratiform clouds (eastern Pacific, eastern Atlantic, and Australia) yield the highest Sr , followed by the extratropical oceans during their hemispheric summer. When Sr is cast in terms of F, the eastern Pacific clouds dominate Sr , with a secondary maximum offshore eastern Asia. Sa is mainly governed by Nd , with more pristine environments being more susceptible to change their albedo. While both Sa and Sr are advantageous for understanding radiative aspects of the aerosol indirect effect, Sr is more suitable for calculating changes in A and F due to the linear relationship between A and ln(Nd ).

11.
J Geophys Res Atmos ; 122(16): 8852-8884, 2017 Aug 27.
Article in English | MEDLINE | ID: mdl-33868883

ABSTRACT

Two kinds of radar-lidar synergy cloud products are compared and analyzed in this study; CERES-CALIPSO-CloudSat-MODIS (CCCM) product and CloudSat radar-lidar (RL) product such as GEOPROF-LIDAR and FLXHR-LIDAR. Compared to GEOPROF-LIDAR, CCCM has more low-level (< 1 km) clouds over tropical oceans because CCCM uses a more relaxed threshold of Cloud-Aerosol Discrimination (CAD) score for Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) vertical feature mask (VFM) product. In contrast, GEOPROF-LIDAR has more mid-level (1-8 km) clouds than CCCM at high latitudes (> 40°). The difference occurs when hydrometeors are detected by CALIPSO lidar but are undetected by CloudSat radar, which may be related to precipitation. In the comparison of cloud radiative effects (CREs), global mean differences between CCCM and FLXHR-LIDAR are mostly smaller than 5 W m-2, while noticeable regional differences are found over three regions. First, CCCM has larger shortwave (SW) and longwave (LW) CREs than FXLHR-LIDAR along the west coasts of Africa and America. This might be caused by missing small-scale marine boundary layer clouds in FLXHR-LIDAR. Second, over tropical oceans where precipitation frequently occurs, SW and LW CREs from FLXHR-LIDAR are larger than those from CCCM partly because FLXHR-LIDAR algorithm includes the contribution of rainwater to total liquid water path. Third, over midlatitude storm-track regions, CCCM shows larger SW and LW CREs than FLXHR-LIDAR, due to CCCM biases caused by larger cloud optical depth or higher cloud effective height.

SELECTION OF CITATIONS
SEARCH DETAIL
...