Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Cell Death Dis ; 15(8): 603, 2024 Aug 20.
Article in English | MEDLINE | ID: mdl-39164278

ABSTRACT

Triple negative breast cancer (TNBC) is an aggressive disease which currently has no effective therapeutic targets and prominent biomarkers. The Sperm Associated antigen 5 (SPAG5) is a mitotic spindle associated protein with oncogenic function in several human cancers. In TNBC, increased SPAG5 expression has been associated with tumor progression, chemoresistance, relapse, and poor clinical outcome. Here we show that high SPAG5 expression in TNBC is regulated by coordinated activity of YAP, mutant p53 and MYC. Depletion of YAP or mutant p53 proteins reduced SPAG5 expression and the recruitment of MYC onto SPAG5 promoter. Targeting of MYC also reduced SPAG5 expression and concomitantly tumorigenicity of TNBC cells. These effects of MYC targeting were synergized with cytotoxic chemotherapy and markedly reduced TNBC oncogenicity in SPAG5-expression dependent manner. These results suggest that mutant p53-MYC-SPAG5 expression can be considered as bona fide predictors of patient's outcome, and reliable biomarkers for effective anticancer therapies.


Subject(s)
Cell Cycle Proteins , Proto-Oncogene Proteins c-myc , Triple Negative Breast Neoplasms , Tumor Suppressor Protein p53 , Humans , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/metabolism , Triple Negative Breast Neoplasms/pathology , Triple Negative Breast Neoplasms/drug therapy , Tumor Suppressor Protein p53/metabolism , Tumor Suppressor Protein p53/genetics , Proto-Oncogene Proteins c-myc/metabolism , Proto-Oncogene Proteins c-myc/genetics , Cell Line, Tumor , Female , Cell Cycle Proteins/metabolism , Cell Cycle Proteins/genetics , Gene Expression Regulation, Neoplastic , Animals , Transcription Factors/metabolism , Transcription Factors/genetics , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/genetics , Mutation/genetics , Mice , YAP-Signaling Proteins/metabolism , Mice, Nude
2.
Cancers (Basel) ; 16(15)2024 Jul 23.
Article in English | MEDLINE | ID: mdl-39123356

ABSTRACT

We assessed the impact of DNA damage response and repair (DDR) biomarker expressions in 222 node-positive early breast cancer (BC) patients from a previous Phase III GOIM 9902 trial of adjuvant taxanes. At a median follow-up of 64 months, the original study showed no disease-free survival (DFS) or overall survival (OS) differences with the addition of docetaxel (D) to epirubicine-cyclophosphamide (EC). Immunohistochemistry was employed to assess the expression of DDR phosphoproteins (pATM, pATR, pCHK1, γH2AX, pRPA32, and pWEE1) in tumor tissue, and their association with clinical outcomes was evaluated through the Cox elastic net model. Over an extended follow-up of 234 months, we confirmed no significant differences in DFS or OS between patients treated with EC and those receiving D → EC. A DDR risk score, inversely driven by ATM and ATR expression, emerged as an independent prognostic factor for both DFS (HR = 0.41, p < 0.0001) and OS (HR = 0.61, p = 0.046). Further validation in a public adjuvant BC cohort was possible only for ATM, confirming its protective role. Overall, our findings confirm the potential role of the DDR pathway in BC prognostication and in shaping treatment strategies advocating for an integrated approach, combining molecular markers with clinical-pathological factors.

3.
Cell Death Dis ; 15(4): 303, 2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38684666

ABSTRACT

Scientific literature supports the evidence that cancer stem cells (CSCs) retain inside low reactive oxygen species (ROS) levels and are, therefore, less susceptible to cell death, including ferroptosis, a type of cell death dependent on iron-driven lipid peroxidation. A collection of lung adenocarcinoma (LUAD) primary cell lines derived from malignant pleural effusions (MPEs) of patients was used to obtain 3D spheroids enriched for stem-like properties. We observed that the ferroptosis inducer RSL3 triggered lipid peroxidation and cell death in LUAD cells when grown in 2D conditions; however, when grown in 3D conditions, all cell lines underwent a phenotypic switch, exhibiting substantial resistance to RSL3 and, therefore, protection against ferroptotic cell death. Interestingly, this phenomenon was reversed by disrupting 3D cells and growing them back in adherence, supporting the idea of CSCs plasticity, which holds that cancer cells have the dynamic ability to transition between a CSC state and a non-CSC state. Molecular analyses showed that ferroptosis resistance in 3D spheroids correlated with an increased expression of antioxidant genes and high levels of proteins involved in iron storage and export, indicating protection against oxidative stress and low availability of iron for the initiation of ferroptosis. Moreover, transcriptomic analyses highlighted a novel subset of genes commonly modulated in 3D spheroids and potentially capable of driving ferroptosis protection in LUAD-CSCs, thus allowing to better understand the mechanisms of CSC-mediated drug resistance in tumors.


Subject(s)
Adenocarcinoma of Lung , Ferroptosis , Lung Neoplasms , Neoplastic Stem Cells , Ferroptosis/genetics , Ferroptosis/drug effects , Humans , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology , Adenocarcinoma of Lung/genetics , Adenocarcinoma of Lung/pathology , Adenocarcinoma of Lung/metabolism , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Lung Neoplasms/metabolism , Spheroids, Cellular/metabolism , Spheroids, Cellular/pathology , Spheroids, Cellular/drug effects , Cell Line, Tumor , Lipid Peroxidation , Reactive Oxygen Species/metabolism , Gene Expression Regulation, Neoplastic , Drug Resistance, Neoplasm/genetics , Iron/metabolism
4.
J Transl Med ; 22(1): 29, 2024 01 06.
Article in English | MEDLINE | ID: mdl-38184610

ABSTRACT

BACKGROUND: The current therapeutic algorithm for Advanced Stage Melanoma comprises of alternating lines of Targeted and Immuno-therapy, mostly via Immune-Checkpoint blockade. While Comprehensive Genomic Profiling of solid tumours has been approved as a companion diagnostic, still no approved predictive biomarkers are available for Melanoma aside from BRAF mutations and the controversial Tumor Mutational Burden. This study presents the results of a Multi-Centre Observational Clinical Trial of Comprehensive Genomic Profiling on Target and Immuno-therapy treated advanced Melanoma. METHODS: 82 samples, collected from 7 Italian Cancer Centres of FFPE-archived Metastatic Melanoma and matched blood were sequenced via a custom-made 184-gene amplicon-based NGS panel. Sequencing and bioinformatics analysis was performed at a central hub. Primary analysis was carried out via the Ion Reporter framework. Secondary analysis and Machine Learning modelling comprising of uni and multivariate, COX/Lasso combination, and Random Forest, was implemented via custom R/Python scripting. RESULTS: The genomics landscape of the ACC-mela cohort is comparable at the somatic level for Single Nucleotide Variants and INDELs aside a few gene targets. All the clinically relevant targets such as BRAF and NRAS have a comparable distribution thus suggesting the value of larger scale sequencing in melanoma. No comparability is reached at the CNV level due to biotechnological biases and cohort numerosity. Tumour Mutational Burden is slightly higher in median for Complete Responders but fails to achieve statistical significance in Kaplan-Meier survival analysis via several thresholding strategies. Mutations on PDGFRB, NOTCH3 and RET were shown to have a positive effect on Immune-checkpoint treatment Overall and Disease-Free Survival, while variants in NOTCH4 were found to be detrimental for both endpoints. CONCLUSIONS: The results presented in this study show the value and the challenge of a genomics-driven network trial. The data can be also a valuable resource as a validation cohort for Immunotherapy and Target therapy genomic biomarker research.


Subject(s)
Early Detection of Cancer , Melanoma , Humans , Melanoma/genetics , Proto-Oncogene Proteins B-raf , Genomics , Italy
5.
Front Immunol ; 14: 1221587, 2023.
Article in English | MEDLINE | ID: mdl-38343436

ABSTRACT

Background: Few data are available about the durability of the response, the induction of neutralizing antibodies, and the cellular response upon the third dose of the anti-severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccine in hemato-oncological patients. Objective: To investigate the antibody and cellular response to the BNT162b2 vaccine in patients with hematological malignancy. Methods: We measured SARS-CoV-2 anti-spike antibodies, anti-Omicron neutralizing antibodies, and T-cell responses 1 month after the third dose of vaccine in 93 fragile patients with hematological malignancy (FHM), 51 fragile not oncological subjects (FNO) aged 80-92, and 47 employees of the hospital (healthcare workers, (HW), aged 23-66 years. Blood samples were collected at day 0 (T0), 21 (T1), 35 (T2), 84 (T3), 168 (T4), 351 (T pre-3D), and 381 (T post-3D) after the first dose of vaccine. Serum IgG antibodies against S1/S2 antigens of SARS-CoV-2 spike protein were measured at every time point. Neutralizing antibodies were measured at T2, T3 (anti-Alpha), T4 (anti-Delta), and T post-3D (anti-Omicron). T cell response was assessed at T post-3D. Results: An increase in anti-S1/S2 antigen antibodies compared to T0 was observed in the three groups at T post-3D. After the third vaccine dose, the median antibody level of FHM subjects was higher than after the second dose and above the putative protection threshold, although lower than in the other groups. The neutralizing activity of antibodies against the Omicron variant of the virus was tested at T2 and T post-3D. 42.3% of FHM, 80,0% of FNO, and 90,0% of HW had anti-Omicron neutralizing antibodies at T post-3D. To get more insight into the breadth of antibody responses, we analyzed neutralizing capacity against BA.4/BA.5, BF.7, BQ.1, XBB.1.5 since also for the Omicron variants, different mutations have been reported especially for the spike protein. The memory T-cell response was lower in FHM than in FNO and HW cohorts. Data on breakthrough infections and deaths suggested that the positivity threshold of the test is protective after the third dose of the vaccine in all cohorts. Conclusion: FHM have a relevant response to the BNT162b2 vaccine, with increasing antibody levels after the third dose coupled with, although low, a T-cell response. FHM need repeated vaccine doses to attain a protective immunological response.


Subject(s)
COVID-19 , Hematologic Neoplasms , Spike Glycoprotein, Coronavirus , Humans , COVID-19 Vaccines , BNT162 Vaccine , COVID-19/prevention & control , SARS-CoV-2 , Antibodies, Neutralizing , Antibodies, Viral
SELECTION OF CITATIONS
SEARCH DETAIL