Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Nature ; 441(7089): 111-4, 2006 May 04.
Article in English | MEDLINE | ID: mdl-16565705

ABSTRACT

The opportunity to harness the RNA interference (RNAi) pathway to silence disease-causing genes holds great promise for the development of therapeutics directed against targets that are otherwise not addressable with current medicines. Although there are numerous examples of in vivo silencing of target genes after local delivery of small interfering RNAs (siRNAs), there remain only a few reports of RNAi-mediated silencing in response to systemic delivery of siRNA, and there are no reports of systemic efficacy in non-rodent species. Here we show that siRNAs, when delivered systemically in a liposomal formulation, can silence the disease target apolipoprotein B (ApoB) in non-human primates. APOB-specific siRNAs were encapsulated in stable nucleic acid lipid particles (SNALP) and administered by intravenous injection to cynomolgus monkeys at doses of 1 or 2.5 mg kg(-1). A single siRNA injection resulted in dose-dependent silencing of APOB messenger RNA expression in the liver 48 h after administration, with maximal silencing of >90%. This silencing effect occurred as a result of APOB mRNA cleavage at precisely the site predicted for the RNAi mechanism. Significant reductions in ApoB protein, serum cholesterol and low-density lipoprotein levels were observed as early as 24 h after treatment and lasted for 11 days at the highest siRNA dose, thus demonstrating an immediate, potent and lasting biological effect of siRNA treatment. Our findings show clinically relevant RNAi-mediated gene silencing in non-human primates, supporting RNAi therapeutics as a potential new class of drugs.


Subject(s)
Primates/genetics , RNA Interference/drug effects , RNA, Small Interfering/pharmacology , Animals , Apolipoproteins B/deficiency , Apolipoproteins B/genetics , Apolipoproteins B/metabolism , Phenotype , RNA, Messenger/genetics , RNA, Messenger/metabolism , RNA, Small Interfering/administration & dosage , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism
2.
Anal Biochem ; 341(1): 156-64, 2005 Jun 01.
Article in English | MEDLINE | ID: mdl-15866540

ABSTRACT

Previous work from this laboratory has shown that plasmid DNA can be encapsulated in small (70-nm-diameter) stabilized plasmid-lipid particles (SPLP) that consist of a single plasmid encapsulated within a bilayer lipid vesicle. SPLP preferentially transfect tumor tissue following intravenous administration. Although the levels of transgene expression in vivo are greater for SPLP than can be achieved with naked DNA or complexes, they are lower than may be required for therapeutic benefit. In the present work we examine whether Ca2+ can enhance the transfection potency of SPLP. It is shown that Ca2+ can enhance SPLP transfection potency in bovine hamster kidney cells by 60- to 100-fold when treated in serum containing medium and an additional 60-fold when serum is absent for the initial 10 min of the transfection period. When cells are treated with SPLP in the presence of Ca2+, there is a fivefold increase in intact plasmid in the cell. It is also shown that this Ca2+ effect involves the formation of calcium phosphate precipitates; however, these precipitates are not directly associated with the SPLP plasmid DNA. The ability of calcium phosphate to facilitate delivery of other macromolecules without direct association is also demonstrated by the release of large-molecular-weight dextrans from endosomal/lysosomal compartments in the presence of calcium phosphate. Finally, it is shown that, unlike naked DNA, SPLP transfection potency in the presence of calcium phosphate is not affected by nuclease activity.


Subject(s)
Calcium/chemistry , Lipids/chemistry , Plasmids/metabolism , Transfection , Animals , Calcium/physiology , Calcium Phosphates/chemistry , Cattle , Cell Line , Cricetinae , Endosomes/metabolism , Gene Expression Regulation/physiology , Intracellular Fluid/chemistry , Intracellular Fluid/metabolism , Lipid Metabolism/genetics , Lipids/genetics , Lysosomes/metabolism , Plasmids/chemistry
3.
Pharm Res ; 22(3): 362-72, 2005 Mar.
Article in English | MEDLINE | ID: mdl-15835741

ABSTRACT

PURPOSE: A fully scalable and extrusion-free method was developed to prepare rapidly and reproducibly stabilized plasmid lipid particles (SPLP) for nonviral, systemic gene therapy. METHODS: Liposomes encapsulating plasmid DNA were formed instantaneously by mixing lipids dissolved in ethanol with an aqueous solution of DNA in a controlled, stepwise manner. Combining DNA-buffer and lipid-ethanol flow streams in a T-shaped mixing chamber resulted in instantaneous dilution of ethanol below the concentration required to support lipid solubility. The resulting DNA-containing liposomes were further stabilized by a second stepwise dilution. RESULTS: Using this method, monodisperse vesicles were prepared with particle sizes less than 200 nm and DNA encapsulation efficiencies greater than 80%. In mice possessing Neuro 2a tumors, SPLP demonstrated a 13 h circulation half-life in vivo, good tumor accumulation and gene expression profiles similar to SPLP previously prepared by detergent dialysis. Cryo transmission electron microscopy analysis showed that SPLP prepared by stepwise ethanol dilution were a mixed population of unilamellar, bilamellar, and oligolamellar vesicles. Vesicles of similar lipid composition, prepared without DNA, were also <200 nm but were predominantly bilamellar with unusual elongated morphologies, suggesting that the plasmid particle affects the morphology of the encapsulating liposome. A similar approach was used to prepare neutral egg phosphatidylcholine:cholesterol (EPC:Chol) liposomes possessing a pH gradient, which was confirmed by the uptake of the lipophilic cation safranin O. CONCLUSIONS: This new method will enable the scale-up and manufacture of SPLP required for preclinical and clinical studies. Additionally, this method now allows for the acceleration of SPLP formulation development, enabling the rapid development and evaluation of novel carrier systems.


Subject(s)
Liposomes/chemical synthesis , Plasmids/chemical synthesis , Technology, Pharmaceutical/methods , Animals , DNA/administration & dosage , DNA/chemical synthesis , Liposomes/administration & dosage , Mice , Plasmids/administration & dosage
4.
J Liposome Res ; 14(3-4): 155-73, 2004.
Article in English | MEDLINE | ID: mdl-15676124

ABSTRACT

Cationic poly(ethylene glycol)-lipid conjugates (CPLs), a class of lipid designed to enhance the interaction of liposomes with cells, possess the following architectural features: 1) a hydrophobic lipid anchor of distearoylphosphatidylethanolamine (DSPE); 2) a hydrophilic spacer of poly(ethylene glycol); and 3) a cationic head group prepared with 0, 1, 3, or 7 lysine residues located at the distal end of the PEG chain, giving rise to CPL possessing 1, 2, 4, or 8 positive charges, respectively (CPL1 to CPL8). Previously we have described the synthesis of CPL, have characterized the postinsertion of CPL into PEG-containing LUVs and SPLP (stabilized plasmid-lipid particles), have shown significant increases in the binding of CPL-LUV to cells, and have observed dramatically enhanced transfection (up to a million-fold) of cells with CPL-SPLP in the presence of calcium [Chen et al. (2000) Bioconjugate Chem. 11, 433-437; Fenske et al. (2001) Biochim. Biophys. Acta 1512, 259-272; Palmer et al. (2003) Biochim. Biophys. Acta 1611, 204-216]. In the present study, we examine a variety of CPL properties (such as polarity and CMC) and characterize CPL-vesicular systems formed by extrusion and examine their interaction with cells. While CPL polarity was observed to increase dramatically with increasing charge number, CMC values were all found to be low, in the range of other PEGylated lipids, and exhibited only a small increase, going from CPL1 (1.3 microM) to CPL8 (2 microM). The CPLs were almost quantitatively incorporated into large unilamellar vesicles (LUVs) prepared by the extrusion method and were evenly distributed across the lipid bilayer. Lower levels of incorporation were obtained when CPLs were incubated with preformed liposomes (DSPC/Chol, 55:45) at 60 degrees C. The binding of CPL-LUVs to BHK cells in vitro was found to be dependent on the distal charge density of the CPL rather than total surface charge. Liposomes possessing CPL4 or CPL8 were observed to bind efficiently to cell surfaces and enhance cellular uptake in BHK cells (as observed with both lipid and aqueous content markers), whereas those possessing CPL1 or CPL2 exhibited little or no binding. These results suggest new directions for the design of liposomal systems capable of in vivo delivery of both conventional and genetic (plasmid and antisense) drugs.


Subject(s)
Lipids/chemistry , Liposomes/chemistry , Polyethylene Glycols/chemistry , Animals , Biological Transport, Active , Cell Line , Cricetinae , Liposomes/isolation & purification , Micelles , Molecular Structure
5.
Biochim Biophys Acta ; 1611(1-2): 204-16, 2003 Apr 01.
Article in English | MEDLINE | ID: mdl-12659962

ABSTRACT

Recent work has shown that plasmid DNA can be efficiently encapsulated in well-defined "stabilized plasmid-lipid particles" (SPLP) that have potential as systemic gene therapy vehicles [Gene Ther. 6 (1999) 271]. In this work, we examine the influence of ligands that enhance cellular uptake on the transfection potency of SPLP. The ligand employed is a cationic poly(ethylene glycol) (PEG) lipid (CPL) consisting of a lipid anchor and a PEG(3400) spacer chain with four positive charges at the end of the PEG (CPL(4)). It is shown that up to 4 mol% CPL(4) can be inserted into preformed SPLP, resulting in up to 50-fold enhancements in uptake into baby hamster kidney (BHK) cells. The addition of Ca(2+) to SPLP-CPL(4) (CPL(4)-incorporated SPLP) results in up to 10(6)-fold enhancements in transgene expression, as compared to SPLP in the absence of either CPL(4) or Ca(2+). These transfection levels are comparable to those observed for plasmid DNA-cationic lipid complexes (lipoplexes) but without the cytotoxic effects noted for lipoplex systems. It is concluded that in the presence of Ca(2+) and appropriate ligands to stimulate uptake, SPLP are highly potent transfection agents.


Subject(s)
Lipids/chemistry , Plasmids/chemistry , Polyethylene Glycols/chemistry , Transfection/methods , Animals , Calcium , Cations, Divalent , Cell Line , Cricetinae , Genetic Therapy , Ligands , Liposomes , Molecular Structure , Phosphatidylethanolamines , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL