Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Adv Sci (Weinh) ; 10(25): e2206238, 2023 09.
Article in English | MEDLINE | ID: mdl-37400423

ABSTRACT

Men demonstrate higher incidence and mortality rates of colorectal cancer (CRC) than women. This study aims to explain the potential causes of such sexual dimorphism in CRC from the perspective of sex-biased gut microbiota and metabolites. The results show that sexual dimorphism in colorectal tumorigenesis is observed in both ApcMin/ + mice and azoxymethane (AOM)/dextran sulfate sodium (DSS)-treated mice with male mice have significantly larger and more tumors, accompanied by more impaired gut barrier function. Moreover, pseudo-germ mice receiving fecal samples from male mice or patients show more severe intestinal barrier damage and higher level of inflammation. A significant change in gut microbiota composition is found with increased pathogenic bacteria Akkermansia muciniphila and deplets probiotic Parabacteroides goldsteinii in both male mice and pseudo-germ mice receiving fecal sample from male mice. Sex-biased gut metabolites in pseudo-germ mice receiving fecal sample from CRC patients or CRC mice contribute to sex dimorphism in CRC tumorigenesis through glycerophospholipids metabolism pathway. Sexual dimorphism in tumorigenesis of CRC mouse models. In conclusion, the sex-biased gut microbiome and metabolites contribute to sexual dimorphism in CRC. Modulating sex-biased gut microbiota and metabolites could be a potential sex-targeting therapeutic strategy of CRC.


Subject(s)
Colorectal Neoplasms , Gastrointestinal Microbiome , Male , Female , Animals , Mice , Colorectal Neoplasms/pathology , Dextran Sulfate , Carcinogenesis , Cell Transformation, Neoplastic
2.
Database (Oxford) ; 20232023 05 18.
Article in English | MEDLINE | ID: mdl-37207350

ABSTRACT

Enhancers, which are key tumorigenic factors with wide applications for subtyping, diagnosis and treatment of cancer, are attracting increasing attention in the cancer research. However, systematic analysis of cancer enhancers poses a challenge due to the lack of integrative data resources, especially those from tumor primary tissues. To provide a comprehensive enhancer profile across cancer types, we developed a cancer enhancer database CenhANCER by curating public resources including all the public H3K27ac ChIP-Seq data from 805 primary tissue samples and 671 cell line samples across 41 cancer types. In total, 57 029 408 typical enhancers, 978 411 super-enhancers and 226 726 enriched transcription factors were identified. We annotated the super-enhancers with chromatin accessibility regions, cancer expression quantitative trait loci (eQTLs), genotype-tissue expression eQTLs and genome-wide association study risk single nucleotide polymorphisms (SNPs) for further functional analysis. The identified enhancers were highly consistent with accessible chromatin regions in the corresponding cancer types, and all the 10 super-enhancer regions identified from one colorectal cancer study were recapitulated in our CenhANCER, both of which testified the high quality of our data. CenhANCER with high-quality cancer enhancer candidates and transcription factors that are potential therapeutic targets across multiple cancer types provides a credible resource for single cancer analysis and for comparative studies of various cancer types. Database URL http://cenhancer.chenzxlab.cn/.


Subject(s)
Genome-Wide Association Study , Neoplasms , Humans , Enhancer Elements, Genetic/genetics , Transcription Factors/genetics , Transcription Factors/metabolism , Cell Line , Chromatin , Neoplasms/genetics
SELECTION OF CITATIONS
SEARCH DETAIL