Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
ACS Appl Mater Interfaces ; 16(9): 11605-11616, 2024 Mar 06.
Article in English | MEDLINE | ID: mdl-38407024

ABSTRACT

Covalent organic frameworks (COFs) having a large surface area, porosity, and substantial amounts of heteroatom content are recognized as the ideal class of materials for energy storage and gas sorption applications. In this work, we have synthesized four different porous COF materials by the polycondensation of a heteroatom-rich flexible triazine-based trialdehyde linker, namely 2,4,6-tris(4-formylphenoxy)-1,3,5-triazine (TPT-CHO), with four different triamine linkers. Triamine linkers were chosen based on differences in size, symmetry, planarity, and heteroatom content, leading to the synthesis of four different COF materials named IITR-COF-1, IITR-COF-2, IITR-COF-3, and IITR-COF-4. IITR-COF-1, synthesized within 24 h from the most planar and largest amine monomer, exhibited the largest Brunauer-Emmett-Teller (BET) surface area of 2830 m2 g-1, superior crystallinity, and remarkable reproducibility compared to the other COFs. All of the synthesized COFs were explored for energy and gas storage applications. It is shown that the surface area and redox-active triazene rings in the materials have a profound effect on energy and gas storage enhancement. In a three-electrode setup, IITR-COF-1 achieved an electrochemical stability potential window (ESPW) of 2.0 V, demonstrating a high specific capacitance of 182.6 F g-1 with energy and power densities of 101.5 Wh kg-1 and 298.3 W kg-1, respectively, at a current density of 0.3 A g-1 in 0.5 M K2SO4 (aq) with long-term durability. The symmetric supercapacitor of IITR-COF-1//IITR-COF-1 exhibited a notable specific capacitance of 30.5 F g-1 and an energy density of 17.0 Wh kg-1 at a current density of 0.12 A g-1. At the same time, it demonstrated 111.3% retention of its initial specific capacitance after 10k charge-discharge cycles. Moreover, it exhibited exceptional CO2 capture capacity of 25.90 and 10.10 wt % at 273 and 298 K, respectively, with 2.1 wt % of H2 storage capacity at 77 K and 1 bar.

2.
Front Plant Sci ; 14: 1087343, 2023.
Article in English | MEDLINE | ID: mdl-36959939

ABSTRACT

The continuing decline in water resources under the ever-changing climate compels us to re-orient our focus to a more sustainable practice. This study investigates the performance of Triticum aestivum wheat genotypes viz. HD-2967, HD-3086, HD-3249, DBW-187, and HD-3226 under well- and deficit-watered conditions for their root-traits, biomass and nitrogen accumulation and remobilization, and water use efficiencies, grown in PVC-tubes. The genotypes HD-2967, HD-3086, HD-3249, DBW-187, and HD-3226 under well-watered (WW) resulted in 36, 35, 38, 33, and 42% more grain yield compared to deficit-watered (DW). Among the genotypes, HD-3249 had the highest grain yield under both well- and deficit-watered conditions. Compared to DW, the WW had 28%, 30%, and 28% greater root length, biomass, and root length density at flowering {102 days (d), Z61}, while among the genotypes, HD-3249 had relatively greater root-traits. At flowering (Z61) and maturity (132 d, Z89), genotypes under WW accumulated 30-46% and 30-53%, respectively greater shoot biomass over the DW. Furthermore, the shoot biomass remobilised for HD-2967, HD-3086, HD-3249, DBW-187, and HD-3226 under the WW was 32, 37, 39, 35, and 35% greater than the DW. The nitrogen partitioning to different plant parts at flowering (Z61) and maturity (Z89) was significantly greater with the WW than with DW. The total nitrogen- remobilized and contribution to grain-N under the WW was 55, 58, 52, 53, 58% and 9, 19, 15, 17, 17% greater than the DW for the genotypes HD-2967, HD-3086, HD-3249, DBW-187, and HD-3226. The irrigation water use efficiency (WUE) at flowering (Z61) was more under the deficit-watered, but the biomass and grain total WUE was improved with the well-watered condition. Hence, it is apparent that proper scheduling of irrigation and N applications, along with the adoption of a genotype suited to a particular environment, will result in better WUE and grain yields, along with better utilization of scarce resources.

3.
Soft Matter ; 18(18): 3546-3556, 2022 May 11.
Article in English | MEDLINE | ID: mdl-35445678

ABSTRACT

One of the main purposes of smart and multifunctional coatings is to have the versatility to be applied in a wide range of applications. However, the functions of smart materials are often highly limited. In particular, the stimuli-responsive lateral expansion of coatings based on 2D materials has not been reported before. This manuscript describes small two-dimensional graphene oxide (GO) flakes (e.g., thin sheets with a thickness of a few nanometers and much larger lateral dimensions) that act as elementary agents for the formation of smart and multifunctional coatings. The coating can be self-assembled from the GO flakes and disassembled flexibly when required. The coating is stimuli-responsive: upon localized contact with water, it expands and forms wrinkling patterns throughout its whole surface. Evaporating the water allows the wrinkles to disappear; hence, the process is reversible. This stimuli-responsiveness can be controlled to be reduced or completely switched off by temperature or pressure. These features are fundamentally due to the reversible intermolecular interactions among the flakes and favorable packing structure of the coating. The smart coating is shown to be useful for patterned fluidic systems of the desired shapes and the development of channels between fluidic reservoirs via the shortest path. Importantly, these results showed that a simple collection of uniquely 2D elementary agents with small nanoscale thickness can self-assemble into macroscopic materials that perform interactive and multifunctional operations.

4.
ACS Cent Sci ; 6(5): 704-714, 2020 May 27.
Article in English | MEDLINE | ID: mdl-32490187

ABSTRACT

The amount of charge of a material has always been regarded as a property (or state) of materials and can be measured precisely and specifically. This study describes for the first time a fundamental physical-chemical phenomenon in which the amount of charge of a material is actually a variable-it depends on the shape of the material. Materials are shown to have continuously variable and reversible ranges of charge states by changing their shapes. The phenomenon was general for different shapes, transformations, materials, atmospheric conditions, and methods of charging. The change in charge was probably due to a dynamic exchange of charge from the material to the surrounding atmosphere as the shape changed via the reversible ionization and deposition of air molecules. Similar changes in charge were observed for self-actuating materials that changed their shapes autonomously. This fundamental relationship between geometry and electrostatics via chemistry is important for the broad range of applications related to the charge of flexible materials.

5.
ACS Appl Mater Interfaces ; 11(40): 36525-36534, 2019 Oct 09.
Article in English | MEDLINE | ID: mdl-31518101

ABSTRACT

Simple, green, and energy-efficient methods for preparing electroactive materials used to generate and store renewable energy are important for a sustainable future. In this study, we showed that noble and certain non-noble metal nanoparticles can be deposited on graphite without the aid of any reducing agent. This method of reducing metal ions to metal nanoparticles by graphite involves only one step (i.e., immersion into a solution) and one chemical (i.e., a metal salt). Hence, the method is exceedingly simple, green, and does not require any energy input. Large amounts of metal nanoparticles are generated both on the surface and deep into the bulk of graphite (∼100 µm). Despite the simplicity of this method, the metal deposited on graphite showed good electrocatalytic performance for ethanol oxidation and oxygen evolution reactions and also functioned as electrodes for supercapacitors. This method is thus ideal for preparing electrocatalytic materials and electrochemical energy storage devices due to its simplicity and environmental sustainability. The simplicity of the method is due to the inherent reducing potential of graphite (i.e., a material that is generally perceived as inert). Results from analyses showed that functionalization of the reactive edges in the regions of defects allowed the graphite to serve as a reducing agent. Increasing the amount of defects (e.g., via chemical or simple mechanical treatments) is shown to be the fundamental principle for increasing the reactivity of graphite.

6.
J Phys Chem Lett ; 8(24): 6142-6147, 2017 Dec 21.
Article in English | MEDLINE | ID: mdl-29206045

ABSTRACT

Surfaces of almost all types of materials are often charged easily by contact electrification or deposition of ions; hence, surface charge is ubiquitous and has a vast range of influences in our lives and in industry. Since the 19th century, scientists have been measuring the charge of multiple materials collectively. The common expectation is that the total charge of multiple materials is equal to the sum of the charges of the individual materials. This study describes a previously unreported phenomenon in which the total charge of two insulating surfaces decreases when the surfaces are brought close to each other. The charge varies continuously and reversibly depending on the distance of separation between the surfaces. Experimental results derived from analyzing the movement of charge suggest that the changes are due to a rapid exchange of charge between the surfaces and their surrounding air. This change can be used to control the surface charge of the materials flexibly and reversibly.

7.
ACS Appl Mater Interfaces ; 9(41): 36350-36357, 2017 Oct 18.
Article in English | MEDLINE | ID: mdl-28944655

ABSTRACT

Nanostructured electrodes are at the forefront of advanced materials research, and have been studied extensively in the context of their potential applications in energy storage and conversion. Here, we report on the properties of core-shell (gold-polypyrrole) hybrid nanowires and their suitability as electrodes in electrochemical capacitors and as electrocatalysts. In general, the specific capacitance of electrochemical capacitors can be increased by faradaic reactions, but their charge transfer resistance impedes charge transport, decreasing the capacitance with increasing charge/discharge rate. The specific capacitance of the hybrid electrodes is enhanced due to the pseudocapacitance of the polypyrrole shells; moreover, the electrodes operate as an ideal capacitive element and maintain their specific capacitance even at fast charge/discharge rates of 4690 mA/cm3 and 10 V/s. These rates far exceed those of other types of pseudocapacitors, and are even superior to electric double layer-based supercapacitors. The mechanisms behind these fast charge/discharge rates are elucidated by electrochemical impedance spectroscopy, and are ascribed to the reduced internal resistance associated with the fast charge transport ability of the gold nanowire cores, low ionic resistance of the polypyrrole shells, and enhanced electron transport across the nanowire's junctions. Furthermore, the hybrid electrodes show great catalytic activity for ethanol electro-oxidation, comparable to bare gold nanowires, and the surface activity of gold cores is not affected by the polypyrrole coating. The electrodes exhibit improved stability for electrocatalysis during potential cycling. This study demonstrates that the gold-polypyrrole hybrid electrodes can store and deliver charge at fast rates, and that the polypyrrole shells of the nanowires extend the catalytic lifetime of the gold cores.

8.
ACS Appl Mater Interfaces ; 9(15): 13406-13414, 2017 Apr 19.
Article in English | MEDLINE | ID: mdl-28368106

ABSTRACT

One dimensional (1D) Pt(II)-based metallo-supramolecular polymer with carboxylic acids (polyPtC) was synthesized using a new asymmetrical ditopic ligand with a pyridine moiety bearing two carboxylic acids. The carboxylic acids in the polymer successfully served as apohosts for imidazole loaded in the polymer interlayer scaffold to generate highly ordered 1D imidazole channels through the metallo-supramolecular polymer chains. The 1D structure of imidazole loaded polymer (polyPtC-Im) was analyzed in detail by thermogravimetric analysis, powder X-ray diffraction, scanning electron microscopy, Fourier transform infrared spectroscopy, and ultraviolet-visible and photoluminescence spectroscopic measurements. PolyPtC-Im exhibited proton conductivity of 1.5 × 10-5 S cm-1 at 120 °C under completely anhydrous conditions, which is 6 orders of magnitude higher than that of the pristine metallo-supramolecular polymer.

9.
Bioconjug Chem ; 27(10): 2307-2314, 2016 Oct 19.
Article in English | MEDLINE | ID: mdl-27580353

ABSTRACT

Water-soluble helical Fe(II)-based metallosupramolecular polymers ((P)- and (M)-polyFe) were synthesized by 1:1 complexation of Fe(II) ions and bis(terpyridine)s bearing a (R)- and (S)-BINOL spacer, respectively. The binding affinity to calf thymus DNA (ct-DNA) was investigated by titration measurements. (P)-PolyFe with the same helicity as B-DNA showed 40-fold higher binding activity (Kb = 13.08 × 107 M-1) to ct-DNA than (M)-polyFe. The differences in binding affinity were supported by electrochemical impedance spectroscopy analysis. The charge-transfer resistance (Rct) of (P)-polyFe increased from 2.5 to 3.9 kΩ upon DNA binding, while that of (M)-polyFe was nearly unchanged. These results indicate that ionically strong binding of (P)-polyFe to DNA chains decreased the mobility of ions in the conjugate. Unique rod-like images were obtained by atomic force microscopy measurement of the DNA conjugate with (P)-polyFe, likely because of the rigid binding between DNA chains and the polymer. Differences in polymer chirality lead to significantly different cytotoxicity levels in A549 cells. (P)-PolyFe showed higher binding affinity to B-DNA and much higher cytotoxicity than (M)-polyFe. The helicity in metallosupramolecular polymer chains was important not only for chiral recognition of DNA but also for coordination to a biological target in the cellular environment.


Subject(s)
Antineoplastic Agents/pharmacology , DNA/metabolism , Polymers/chemistry , Polymers/metabolism , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/metabolism , Apoptosis/drug effects , Chemistry Techniques, Synthetic , Dielectric Spectroscopy/methods , Drug Screening Assays, Antitumor/methods , Fluoresceins/metabolism , Humans , Iron Compounds/chemistry , Mice , Microscopy, Atomic Force , NIH 3T3 Cells/drug effects , Polymers/pharmacology , Solubility , Water/chemistry
10.
ACS Appl Mater Interfaces ; 8(21): 13526-31, 2016 Jun 01.
Article in English | MEDLINE | ID: mdl-27164027

ABSTRACT

Linear Fe(II)-based metallo-supramolecular polymer chains were precisely aligned by the simple replacement of the counteranion with an N,N'-bis(4-benzosulfonic acid)perylene-3,4,9,10-tetracarboxylbisimide (PSA) dianion, which linked the polymer chains strongly. A parallel alignment of the polymer chains promoted by the PSA dianions yielded nanosheets formation. The nanosheets' structure was analyzed with FESEM, HRTEM, UV-vis, and XRD in detail. The nanosheets showed more than 5 times higher proton conductivity than the original polymer due to the smooth ionic conduction through the aligned polymer chains. The complex impedance plot with two semicircles also suggested the presence of grain boundaries in the polymer nanosheets.

11.
ACS Appl Mater Interfaces ; 7(34): 19034-42, 2015 Sep 02.
Article in English | MEDLINE | ID: mdl-26285226

ABSTRACT

A platinum(II)-based, luminescent, metallo-supramolecular polymer (PolyPtL1) having an inherent dipole moment was synthesized via complexation of Pt(II) ions with an asymmetric ligand L1, containing terpyridyl and pyridyl moieties. The synthesized ligand and polymer were well characterized by various NMR techniques, optical spectroscopy, and cyclic voltammetry studies. The morphological study by atomic force microscopy revealed the individual and assembled polymer chains of 1-4 nm height. The polymer was specifically attached on Au-electrodes to produce two types of film (films 1 and 2) in which the polymer chains were aligned with their dipoles in opposite directions. The Au-surface bounded films were characterized by UV-vis, Raman spectroscopy, cyclic voltammetry, and atomic force microscopy study. The quantum mechanical calculation determined the average dipole moment for each monomer unit in PolyPtL1 to be about 5.8 D. The precise surface derivatization permitted effective tuning of the direction dipole moment, as well as the direction of rectification of the resulting polymer-attached molecular diodes. Film 1 was more conductive in positive bias region with an average rectification ratio (RR = I(+4 V)/I(-4 V)) ≈ 20, whereas film 2 was more conducting in negative bias with an average rectification ratio (RR = I(-4 V)/I(+4 V)) ≈ 18.

12.
Chem Commun (Camb) ; 51(55): 11012-4, 2015 Jul 14.
Article in English | MEDLINE | ID: mdl-26051550

ABSTRACT

High proton conduction (8.5 × 10(-2) mS cm(-1)) was observed in a Mo(vi)-based metallo-supramolecular polymer with carboxylic acids at 95%RH. The integration of OH groups into the polymer was analysed using FTIR spectroscopy and found to be crucial for the proton transport in the polymer.

13.
Dalton Trans ; 42(45): 16036-42, 2013 Dec 07.
Article in English | MEDLINE | ID: mdl-23942725

ABSTRACT

A series of Zn(II)-based metallo-supramolecular polymers were prepared by 1 : 1 complexation of Zn(ClO4)2 and bis(terpyridine)s with electron-donating (alkoxy) or electron-withdrawing (cyano) groups at the 6-position of the peripheral pyridine moiety. The Zn(II)-based polymers displayed relatively high quantum yields (ΦPL = 0.68-0.76) in solution at room temperature. More importantly, they showed different luminescent colours of blue, cyan, and green in the film state, because of the large Stokes shift caused by the substituent effect of the ligand.


Subject(s)
Organometallic Compounds/chemistry , Polymers/chemistry , Pyridines/chemistry , Zinc/chemistry , Electrons , Ligands , Luminescence
14.
J Environ Biol ; 30(3): 437-40, 2009 May.
Article in English | MEDLINE | ID: mdl-20120474

ABSTRACT

Pesticides are chemicals used for pest control in the agricultural fields. They finally reach the surrounding water bodies through surface runoff affecting the aquatic fauna. Dimethoate is frequently used organophosphate pesticide due to its high effectiveness and rapid breakdown into environmentally safe products. A 96 hr static acute toxicity test was carried out to determine the LC50 value of dimethoate, on the freshwater airbreathing catfish Heteropneustes fossilis (Bloch). The fish were exposed to 7 different concentrations of dimethoate (2.50, 2.75, 3.00, 3.25, 3.50, 3.75 and 4.00 mg l(-1)) for toxicity bioassay. Control (0.00 mg l(-1)) was also carried out. The data were subjected to Finney's Probit analysis and processed with Trimmed Spearman-Karber statistical software. The LC50 values for dimethoate for 24, 48, 72 and 96 hr were 3.38, 3.23, 3.08 and 2.98 mg l(-1), respectively. At higher concentration of dimethoate (3.25 mg l(-1) and above) the fish showed uncoordinated behaviour such as erratic and jerky swimming, attempt to jump out of water, frequent surfacing and gulping of air, decrease in opercular movement and copious secretion of mucus all over the body.


Subject(s)
Catfishes/physiology , Dimethoate/toxicity , Fresh Water/chemistry , Insecticides/toxicity , Water Pollutants, Chemical/toxicity , Animals , Biological Assay , Dimethoate/analysis , Insecticides/analysis , Toxicity Tests, Acute , Water Pollutants, Chemical/analysis
15.
J Colloid Interface Sci ; 315(2): 528-36, 2007 Nov 15.
Article in English | MEDLINE | ID: mdl-17692864

ABSTRACT

We have formed the cholesterol monolayer and multilayer LB films on the self-assembled monolayers of 2-naphthalenethiol (2-NT) and thiophenol (TP) and studied the electrochemical barrier properties of these composite films using cyclic voltammetry and electrochemical impedance spectroscopy. We have also characterized the cholesterol monolayer film using grazing angle FTIR, scanning tunneling microscopy (STM) and atomic force microscopy (AFM). Cholesterol has a long hydrophobic steroid chain, which makes it a suitable candidate to assemble on the hydrophobic surfaces. We find that the highly hydrophobic surface formed by the self-assembled monolayers (SAM) of 2-NT and TP act as effective platforms for the fabrication of cholesterol monolayer and multilayer films. The STM studies show that the cholesterol monolayer films on 2-NT form striped patterns with a separation of 1.0 nm between them. The area per cholesterol molecule is observed to be 0.64 nm2 with a tilt angle of about 28.96 degrees from the surface normal. The electrochemical studies show a large increase in charge transfer resistance and lowering of interfacial capacitance due to the formation of the LB film of cholesterol. We have compared the behavior of this system with that of cholesterol monolayer and multilayers formed on the self-assembled monolayer of thiophenol.


Subject(s)
Cholesterol/chemistry , Electrochemistry , Electron Transport , Lipid Bilayers/chemistry , Membranes, Artificial , Microscopy, Atomic Force , Microscopy, Scanning Tunneling , Naphthalenes , Oxidation-Reduction , Phenols , Spectroscopy, Fourier Transform Infrared , Sulfhydryl Compounds , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL
...