Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 35
Filter
Add more filters










Publication year range
1.
bioRxiv ; 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38617370

ABSTRACT

Microbial rhodopsin-derived genetically encoded voltage indicators (GEVIs) are powerful tools for mapping bioelectrical dynamics in cell culture and in live animals. Förster resonance energy transfer (FRET)-opsin GEVIs use voltage-dependent changes in opsin absorption to modulate the fluorescence of an attached fluorophore, achieving high brightness, speed, and voltage sensitivity. However, the voltage sensitivity of most FRET-opsin GEVIs has been reported to decrease or vanish under two-photon (2P) excitation. Here we investigated the photophysics of the FRET-opsin GEVIs Voltron1 and 2. We found that the voltage sensitivity came from a photocycle intermediate, not from the opsin ground state. The voltage sensitivities of both GEVIs were nonlinear functions of illumination intensity; for Voltron1, the sensitivity reversed sign under low-intensity illumination. Using photocycle-optimized 2P illumination protocols, we demonstrate 2P voltage imaging with Voltron2 in barrel cortex of a live mouse. These results open the door to high-speed 2P voltage imaging of FRET-opsin GEVIs in vivo.

2.
bioRxiv ; 2024 Mar 07.
Article in English | MEDLINE | ID: mdl-37398232

ABSTRACT

Dendrites on neurons integrate synaptic inputs to determine spike timing. Dendrites also convey back-propagating action potentials (bAPs) which interact with synaptic inputs to produce plateau potentials and to mediate synaptic plasticity. The biophysical rules which govern the timing, spatial structures, and ionic character of dendritic excitations are not well understood. We developed molecular, optical, and computational tools to map sub-millisecond voltage dynamics throughout the dendritic trees of CA1 pyramidal neurons under diverse optogenetic and synaptic stimulus patterns, in acute brain slices. We observed history-dependent bAP propagation in distal dendrites, driven by locally generated Na + spikes (dSpikes). Dendritic depolarization creates a transient window for dSpike propagation, opened by A-type K V channel inactivation, and closed by slow Na V inactivation. Collisions of dSpikes with synaptic inputs triggered calcium channel and N-methyl-D-aspartate receptor (NMDAR)-dependent plateau potentials, with accompanying complex spikes at the soma. This hierarchical ion channel network acts as a spike-rate accelerometer, providing an intuitive picture of how dendritic excitations shape associative plasticity rules.

3.
Nat Methods ; 20(10): 1581-1592, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37723246

ABSTRACT

Here we report SUPPORT (statistically unbiased prediction utilizing spatiotemporal information in imaging data), a self-supervised learning method for removing Poisson-Gaussian noise in voltage imaging data. SUPPORT is based on the insight that a pixel value in voltage imaging data is highly dependent on its spatiotemporal neighboring pixels, even when its temporally adjacent frames alone do not provide useful information for statistical prediction. Such dependency is captured and used by a convolutional neural network with a spatiotemporal blind spot to accurately denoise voltage imaging data in which the existence of the action potential in a time frame cannot be inferred by the information in other frames. Through simulations and experiments, we show that SUPPORT enables precise denoising of voltage imaging data and other types of microscopy image while preserving the underlying dynamics within the scene.


Subject(s)
Microscopy , Neural Networks, Computer , Signal-To-Noise Ratio , Normal Distribution , Image Processing, Computer-Assisted/methods
4.
J Neurosci ; 43(30): 5448-5457, 2023 07 26.
Article in English | MEDLINE | ID: mdl-37419688

ABSTRACT

Activity-dependent changes in the number of AMPA-type glutamate receptors (AMPARs) at the synapse underpin the expression of LTP and LTD, cellular correlates of learning and memory. Post-translational ubiquitination has emerged as a key regulator of the trafficking and surface expression of AMPARs, with ubiquitination of the GluA1 subunit at Lys-868 controlling the post-endocytic sorting of the receptors into the late endosome for degradation, thereby regulating their stability at synapses. However, the physiological significance of GluA1 ubiquitination remains unknown. In this study, we generated mice with a knock-in mutation in the major GluA1 ubiquitination site (K868R) to investigate the role of GluA1 ubiquitination in synaptic plasticity, learning, and memory. Our results reveal that these male mice have normal basal synaptic transmission but exhibit enhanced LTP and deficits in LTD. They also display deficits in short-term spatial memory and cognitive flexibility. These findings underscore the critical roles of GluA1 ubiquitination in bidirectional synaptic plasticity and cognition in male mice.SIGNIFICANCE STATEMENT Subcellular targeting and membrane trafficking determine the precise number of AMPA-type glutamate receptors at synapses, processes that are essential for synaptic plasticity, learning, and memory. Post-translational ubiquitination of the GluA1 subunit marks AMPARs for degradation, but its functional role in vivo remains unknown. Here we demonstrate that the GluA1 ubiquitin-deficient mice exhibit an altered threshold for synaptic plasticity accompanied by deficits in short-term memory and cognitive flexibility. Our findings suggest that activity-dependent ubiquitination of GluA1 fine-tunes the optimal number of synaptic AMPARs required for bidirectional synaptic plasticity and cognition in male mice. Given that increases in amyloid-ß cause excessive ubiquitination of GluA1, inhibiting that GluA1 ubiquitination may have the potential to ameliorate amyloid-ß-induced synaptic depression in Alzheimer's disease.


Subject(s)
Neuronal Plasticity , Receptors, AMPA , Mice , Male , Animals , Receptors, AMPA/metabolism , alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid/metabolism , Neuronal Plasticity/physiology , Synapses/physiology , Receptors, Glutamate/metabolism , Ubiquitination , Cognition , Hippocampus/metabolism
5.
bioRxiv ; 2023 Dec 07.
Article in English | MEDLINE | ID: mdl-37292614

ABSTRACT

A tool to map changes in synaptic strength during a defined time window could provide powerful insights into the mechanisms governing learning and memory. We developed a technique, Extracellular Protein Surface Labeling in Neurons (EPSILON), to map α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) insertion in vivo by pulse-chase labeling of surface AMPARs with membrane-impermeable dyes. This approach allows for single-synapse resolution maps of plasticity in genetically targeted neurons during memory formation. We investigated the relationship between synapse-level and cell-level memory encodings by mapping synaptic plasticity and cFos expression in hippocampal CA1 pyramidal cells upon contextual fear conditioning (CFC). We observed a strong correlation between synaptic plasticity and cFos expression, suggesting a synaptic mechanism for the association of cFos expression with memory engrams. The EPSILON technique is a useful tool for mapping synaptic plasticity and may be extended to investigate trafficking of other transmembrane proteins.

6.
bioRxiv ; 2023 May 26.
Article in English | MEDLINE | ID: mdl-37292691

ABSTRACT

Neurons integrate synaptic inputs within their dendrites and produce spiking outputs, which then propagate down the axon and back into the dendrites where they contribute to plasticity. Mapping the voltage dynamics in dendritic arbors of live animals is crucial for understanding neuronal computation and plasticity rules. Here we combine patterned channelrhodopsin activation with dual-plane structured illumination voltage imaging, for simultaneous perturbation and monitoring of dendritic and somatic voltage in Layer 2/3 pyramidal neurons in anesthetized and awake mice. We examined the integration of synaptic inputs and compared the dynamics of optogenetically evoked, spontaneous, and sensory-evoked back-propagating action potentials (bAPs). Our measurements revealed a broadly shared membrane voltage throughout the dendritic arbor, and few signatures of electrical compartmentalization among synaptic inputs. However, we observed spike rate acceleration-dependent propagation of bAPs into distal dendrites. We propose that this dendritic filtering of bAPs may play a critical role in activity-dependent plasticity.

8.
Nat Methods ; 20(7): 1082-1094, 2023 07.
Article in English | MEDLINE | ID: mdl-36624211

ABSTRACT

Video-based screening of pooled libraries is a powerful approach for directed evolution of biosensors because it enables selection along multiple dimensions simultaneously from large libraries. Here we develop a screening platform, Photopick, which achieves precise phenotype-activated photoselection over a large field of view (2.3 × 2.3 mm, containing >103 cells, per shot). We used the Photopick platform to evolve archaerhodopsin-derived genetically encoded voltage indicators (GEVIs) with improved signal-to-noise ratio (QuasAr6a) and kinetics (QuasAr6b). These GEVIs gave improved signals in cultured neurons and in live mouse brains. By combining targeted in vivo optogenetic stimulation with high-precision voltage imaging, we characterized inhibitory synaptic coupling between individual cortical NDNF (neuron-derived neurotrophic factor) interneurons, and excitatory electrical synapses between individual hippocampal parvalbumin neurons. The QuasAr6 GEVIs are powerful tools for all-optical electrophysiology and the Photopick approach could be adapted to evolve a broad range of biosensors.


Subject(s)
Electrophysiological Phenomena , Hippocampus , Mice , Animals , Hippocampus/physiology , Cells, Cultured , Neurons/physiology , Interneurons
9.
Nat Biotechnol ; 41(5): 631-639, 2023 05.
Article in English | MEDLINE | ID: mdl-36593408

ABSTRACT

Recording transcriptional histories of a cell would enable deeper understanding of cellular developmental trajectories and responses to external perturbations. Here we describe an engineered protein fiber that incorporates diverse fluorescent marks during its growth to store a ticker tape-like history. An embedded HaloTag reporter incorporates user-supplied dyes, leading to colored stripes that map the growth of each individual fiber to wall clock time. A co-expressed eGFP tag driven by a promoter of interest records a history of transcriptional activation. High-resolution multi-spectral imaging on fixed samples reads the cellular histories, and interpolation of eGFP marks relative to HaloTag timestamps provides accurate absolute timing. We demonstrate recordings of doxycycline-induced transcription in HEK cells and cFos promoter activation in cultured neurons, with a single-cell absolute accuracy of 30-40 minutes over a 12-hour recording. The protein-based ticker tape design we present here could be generalized to achieve massively parallel single-cell recordings of diverse physiological modalities.


Subject(s)
Neurons , Proteins , Neurons/physiology , Promoter Regions, Genetic , Green Fluorescent Proteins/genetics
10.
Elife ; 112022 03 23.
Article in English | MEDLINE | ID: mdl-35319464

ABSTRACT

Back-propagating action potentials (bAPs) regulate synaptic plasticity by evoking voltage-dependent calcium influx throughout dendrites. Attenuation of bAP amplitude in distal dendritic compartments alters plasticity in a location-specific manner by reducing bAP-dependent calcium influx. However, it is not known if neurons exhibit branch-specific variability in bAP-dependent calcium signals, independent of distance-dependent attenuation. Here, we reveal that bAPs fail to evoke calcium influx through voltage-gated calcium channels (VGCCs) in a specific population of dendritic branches in mouse cortical layer 2/3 pyramidal cells, despite evoking substantial VGCC-mediated calcium influx in sister branches. These branches contain VGCCs and successfully propagate bAPs in the absence of synaptic input; nevertheless, they fail to exhibit bAP-evoked calcium influx due to a branch-specific reduction in bAP amplitude. We demonstrate that these branches have more elaborate branch structure compared to sister branches, which causes a local reduction in electrotonic impedance and bAP amplitude. Finally, we show that bAPs still amplify synaptically-mediated calcium influx in these branches because of differences in the voltage-dependence and kinetics of VGCCs and NMDA-type glutamate receptors. Branch-specific compartmentalization of bAP-dependent calcium signals may provide a mechanism for neurons to diversify synaptic tuning across the dendritic tree.


Subject(s)
Calcium , Dendrites , Action Potentials/physiology , Animals , Calcium/metabolism , Calcium Channels/physiology , Dendrites/physiology , Mice , Pyramidal Cells/physiology
11.
Semin Cell Dev Biol ; 125: 122-135, 2022 05.
Article in English | MEDLINE | ID: mdl-34103208

ABSTRACT

Memory is composed of various phases including cellular consolidation, systems consolidation, reconsolidation, and extinction. In the last few years it has been shown that simple association memories can be encoded by a subset of the neuronal population called engram cells. Activity of these cells is necessary and sufficient for the recall of association memory. However, it is unclear which molecular mechanisms allow cellular engrams to encode the diverse phases of memory. Further research is needed to examine the possibility that it is the synapses between engram cells (the synaptic engram) that constitute the memory. In this review we summarize recent findings on cellular engrams with a focus on different phases of memory, and discuss the distinct molecular mechanism required for cellular and synaptic engrams.


Subject(s)
Mental Recall , Synapses , Mental Recall/physiology , Neurons/physiology
12.
Mol Brain ; 14(1): 174, 2021 12 07.
Article in English | MEDLINE | ID: mdl-34876180

ABSTRACT

Ketamine, a non-competitive antagonist of the N-methyl-D-aspartate receptor (NMDAR), generates a rapidly-acting antidepressant effect. It exerts psychomimetic effects, yet demands a further investigation of its mechanism. Previous research showed that ketamine did no longer promote hyperlocomotion in GluN2D knockout (KO) mice, which is a subunit of NMDAR. In the present study, we tested whether GluN2D-containing NMDARs participate in the physiological changes in the medial prefrontal cortex (mPFC) triggered by ketamine. Sub-anesthetic dose of ketamine (25 mg/kg) elevated the frequency of spontaneous excitatory postsynaptic currents (sEPSC) in wild-type (WT) mice, but not in GluN2D KO mice, 1 h after the injection. The amplitude of sEPSC and paired-pulse ratio (PPR) were unaltered by ketamine in both WT and GluN2D KO mice. These findings suggest that GluN2D-containing NMDARs might play a role in the ketamine-mediated changes in glutamatergic neurons in mPFC and, presumably, in ketamine-induced hyperlocomotion.


Subject(s)
Ketamine , Animals , Excitatory Postsynaptic Potentials , Ketamine/pharmacology , Mice , Mice, Inbred C57BL , Mice, Knockout , Neurons/metabolism , Prefrontal Cortex/metabolism , Receptors, N-Methyl-D-Aspartate/metabolism
13.
Neuron ; 109(17): 2717-2726.e3, 2021 09 01.
Article in English | MEDLINE | ID: mdl-34363751

ABSTRACT

Successful adaptation to the environment requires an accurate response to external threats by recalling specific memories. Memory formation and recall require engram cell activity and synaptic strengthening among activated neuronal ensembles. However, elucidation of the underlying neural substrates of associative fear memory has remained limited without a direct interrogation of extinction-induced changes of specific synapses that encode a specific auditory fear memory. Using dual-eGRASP (enhanced green fluorescent protein reconstitution across synaptic partners), we found that synapses among activated neuronal ensembles or activated synaptic ensembles showed a significantly larger spine morphology at auditory cortex (AC)-to-lateral amygdala (LA) projections after auditory fear conditioning in mice. Fear extinction reversed these enhanced synaptic ensemble spines, whereas re-conditioning with the same tone and shock restored the spine size of the synaptic ensemble. We suggest that synaptic ensembles encode and represent different fear memory states.


Subject(s)
Amygdala/physiology , Fear , Memory , Synapses/physiology , Amygdala/cytology , Animals , Dendritic Spines/physiology , Extinction, Psychological , Male , Mice , Mice, Inbred C57BL
14.
Mol Psychiatry ; 26(12): 7538-7549, 2021 12.
Article in English | MEDLINE | ID: mdl-34253863

ABSTRACT

Heterogeneity in the etiopathology of autism spectrum disorders (ASD) limits the development of generic remedies, requires individualistic and patient-specific research. Recent progress in human-induced pluripotent stem cell (iPSC) technology provides a novel platform for modeling ASDs for studying complex neuronal phenotypes. In this study, we generated telencephalic induced neuronal (iN) cells from iPSCs derived from an ASD patient with a heterozygous point mutation in the DSCAM gene. The mRNA of DSCAM and the density of DSCAM in dendrites were significantly decreased in ASD compared to control iN cells. RNA sequencing analysis revealed that several synaptic function-related genes including NMDA receptor subunits were downregulated in ASD iN cells. Moreover, NMDA receptor (R)-mediated currents were significantly reduced in ASD compared to control iN cells. Normal NMDA-R-mediated current levels were rescued by expressing wild-type DSCAM in ASD iN cells, and reduced currents were observed by truncated DSCAM expression in control iN cells. shRNA-mediated DSCAM knockdown in control iN cells resulted in the downregulation of an NMDA-R subunit, which was rescued by the overexpression of shRNA-resistant DSCAM. Furthermore, DSCAM was co-localized with NMDA-R components in the dendritic spines of iN cells whereas their co-localizations were significantly reduced in ASD iN cells. Levels of phospho-ERK1/2 were significantly lower in ASD iN cells, suggesting a potential mechanism. A neural stem cell-specific Dscam heterozygous knockout mouse model, showing deficits in social interaction and social memory with reduced NMDA-R currents. These data suggest that DSCAM mutation causes pathological symptoms of ASD by dysregulating NMDA-R function.


Subject(s)
Autism Spectrum Disorder , Cell Adhesion Molecules/genetics , Receptors, N-Methyl-D-Aspartate , Animals , Autism Spectrum Disorder/metabolism , Humans , Mice , Mice, Knockout , Mutation/genetics , Neurons/metabolism , Receptors, N-Methyl-D-Aspartate/genetics , Receptors, N-Methyl-D-Aspartate/metabolism
15.
Mol Brain ; 14(1): 26, 2021 02 01.
Article in English | MEDLINE | ID: mdl-33526063

ABSTRACT

The synaptic tag and capture (STC) hypothesis provides an important theoretical basis for understanding the synaptic basis of associative learning. We recently provided pharmacological evidence that calcium-permeable AMPA receptors (CP-AMPARs) are a crucial component of this form of heterosynaptic metaplasticity. Here we have investigated two predictions that arise on the basis of CP-AMPARs serving as a trigger of STC. Firstly, we compared the effects of the order in which we delivered a strong theta burst stimulation (TBS) protocol (75 pulses) and a weak TBS protocol (15 pulses) to two independent inputs. We only observed significant heterosynaptic metaplasticity when the strong TBS preceded the weak TBS. Second, we found that pausing stimulation following either the sTBS or the wTBS for ~20 min largely eliminates the heterosynaptic metaplasticity. These observations are consistent with a process that is triggered by the synaptic insertion of CP-AMPARs and provide a framework for establishing the underlying molecular mechanisms.


Subject(s)
CA1 Region, Hippocampal/metabolism , Calcium/metabolism , Cell Membrane Permeability , Receptors, AMPA/metabolism , Synapses/metabolism , Animals , Electric Stimulation , Male , Mice, Inbred C57BL , Neuronal Plasticity , Theta Rhythm/physiology
16.
Nat Commun ; 12(1): 413, 2021 01 18.
Article in English | MEDLINE | ID: mdl-33462202

ABSTRACT

Long-term potentiation (LTP) at hippocampal CA1 synapses can be expressed by an increase either in the number (N) of AMPA (α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid) receptors or in their single channel conductance (γ). Here, we have established how these distinct synaptic processes contribute to the expression of LTP in hippocampal slices obtained from young adult rodents. LTP induced by compressed theta burst stimulation (TBS), with a 10 s inter-episode interval, involves purely an increase in N (LTPN). In contrast, either a spaced TBS, with a 10 min inter-episode interval, or a single TBS, delivered when PKA is activated, results in LTP that is associated with a transient increase in γ (LTPγ), caused by the insertion of calcium-permeable (CP)-AMPA receptors. Activation of CaMKII is necessary and sufficient for LTPN whilst PKA is additionally required for LTPγ. Thus, two mechanistically distinct forms of LTP co-exist at these synapses.


Subject(s)
CA1 Region, Hippocampal/physiology , Cyclic AMP-Dependent Protein Kinases/metabolism , Excitatory Postsynaptic Potentials/physiology , Long-Term Potentiation/physiology , Receptors, AMPA/metabolism , Animals , Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism , Male , Memory, Long-Term/physiology , Patch-Clamp Techniques , Rats , Theta Rhythm/physiology
17.
Neurosci Res ; 161: 8-17, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33007326

ABSTRACT

Successfully navigating dynamic environments requires balancing the decision to stay at an optimal choice with that to switch to an alternative to acquire new knowledge. However, the genetic factors and cellular activity shaping this "stay or switch" action decision remains largely unidentified. Here we find that mice carrying a deletion of the exchange protein directly activated by cAMP 2 (Epac2) gene, a putative autism locus, exhibit perseverative "stay" behavior in a dynamic foraging task. Anatomical analysis found that the loss of Epac2 resulted in a significant decrease in the density of PV-expressing interneurons in the ventrolateral orbitofrontal cortex (OFC) and dorsal striatum (dSTR). Further, in vitro whole cell patch clamp recordings of PV+ GABAergic interneurons in the dSTR revealed altered neural activity in Epac2 KO mice in response to dopamine. Our findings highlight a potential role of Epac2 in structural changes and neural responses of PV-expressing GABAergic interneurons in the ventrolateral OFC and dSTR during value-based reinforcement learning and link Epac2 function to abnormal decision-making processes and perseverative behaviors seen in autism.


Subject(s)
Interneurons , Reward , Animals , Decision Making , Dopamine , Mice , Patch-Clamp Techniques , Prefrontal Cortex
18.
Brain Neurosci Adv ; 4: 2398212820957847, 2020.
Article in English | MEDLINE | ID: mdl-33088919

ABSTRACT

The ketamine metabolite (2R,6R)-hydroxynorketamine has been proposed to have rapid and persistent antidepressant actions in rodents, but its mechanism of action is controversial. We have compared the ability of (R,S)-ketamine with the (2S,6S)- and (2R,6R)-isomers of hydroxynorketamine to affect the induction of N-methyl-d-aspartate receptor-dependent long-term potentiation in the mouse hippocampus. Following pre-incubation of these compounds, we observed a concentration-dependent (1-10 µM) inhibition of long-term potentiation by ketamine and a similar effect of (2S,6S)-hydroxynorketamine. At a concentration of 10 µM, (2R,6R)-hydroxynorketamine also inhibited the induction of long-term potentiation. These findings raise the possibility that inhibition of N-methyl-d-aspartate receptor-mediated synaptic plasticity is a site of action of the hydroxynorketamine metabolites with respect to their rapid and long-lasting antidepressant-like effects.

19.
Hippocampus ; 30(11): 1158-1166, 2020 11.
Article in English | MEDLINE | ID: mdl-32644222

ABSTRACT

Neur1 and Neur2, mouse homologs of the Drosophila neur gene, consist of two neuralized homology repeat domains and a RING domain. Both Neur1 and Neur2 are expressed in the whole adult brain and encode E3 ubiquitin ligases, which play a crucial role in the Notch signaling pathways. A previous study reported that overexpression of Neur1 enhances hippocampus-dependent memory, whereas the role of Neur2 remains largely unknown. Here, we aimed to elucidate the respective roles of Neur1 and Neur2 in hippocampus-dependent memory using three lines of genetically modified mice: Neur1 knock-out, Neur2 knock-out, and Neur1 and Neur2 double knock-out (D-KO). Our results showed that spatial memory was impaired when both Neur1 and Neur2 were deleted, but not in the individual knock-out of either Neur1 or Neur2. In addition, basal synaptic properties estimated by input-output relationships and paired-pulse facilitation did not change, but a form of long-term potentiation that requires protein synthesis was specifically impaired in the D-KO mice. These results collectively suggest that Neur1 and Neur2 are crucially involved in hippocampus-dependent spatial memory and synaptic plasticity.


Subject(s)
Hippocampus/metabolism , Nerve Tissue Proteins/deficiency , Neuronal Plasticity/physiology , Repressor Proteins/deficiency , Spatial Memory/physiology , Ubiquitin-Protein Ligase Complexes/deficiency , Animals , Female , Male , Maze Learning/physiology , Mice , Mice, Inbred C57BL , Mice, Knockout , Nerve Tissue Proteins/genetics , Repressor Proteins/genetics , Ubiquitin-Protein Ligase Complexes/genetics
20.
Neurobiol Learn Mem ; 169: 107171, 2020 03.
Article in English | MEDLINE | ID: mdl-31978552

ABSTRACT

Memory is stored in our brains over a temporally graded transition. With time, recently formed memories are transformed into remote memories for permanent storage; multiple brain regions, such as the hippocampus and neocortex, participate in this process. In this study, we aimed to understand the molecular mechanism of systems consolidation of memory and to investigate the brain regions that contribute to this regulation. We first carried out a contextual fear memory test using a transgenic mouse line, which expressed exogenously-derived Aplysia octopamine receptors in the forebrain region, such that, in response to octopamine treatment, cyclic adenosine monophosphate (cAMP) levels could be transiently elevated. From this experiment, we revealed that transient elevation of cAMP levels in the forebrain during systems consolidation led to an enhancement in remote fear memory and increased miniature excitatory synaptic currents in layer II/III of the anterior cingulate cortex (ACC). Furthermore, using an adeno-associated-virus-driven DREADD system, we investigated the specific regions in the forebrain that contribute to the regulation of memory transfer into long-term associations. Our results implied that transient elevation of cAMP levels was induced chemogenetically in the ACC, but not in the hippocampus, and showed a significant enhancement of remote memory. This finding suggests that neuronal activation during systems consolidation through the elevation of cAMP levels in the ACC contributes to remote memory enhancement.


Subject(s)
Cyclic AMP/physiology , Fear/physiology , Gyrus Cinguli/physiology , Hippocampus/physiology , Memory Consolidation/physiology , Memory, Long-Term/physiology , Neurons/physiology , Animals , Male , Mice, Inbred C57BL , Mice, Transgenic
SELECTION OF CITATIONS
SEARCH DETAIL
...