Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Mater Today Proc ; 65: 2794-2800, 2022.
Article in English | MEDLINE | ID: mdl-35757585

ABSTRACT

Moderate Resolution Imaging Spectroradiometer (MODIS) and Ozone Monitoring Instrument (OMI) based data are used to evaluate the effects of the COVID-19 lockdown on the concentrations of pollutants such as aerosol optical depth (AOD) and tropospheric columns of nitrogen dioxide (NO2) along with sulfur dioxide (SO2) respectively for the period of January 2017 to September 2021 over the capital city of Assam, Guwahati. In India lockdown due to COVID-19 was first imposed from 24th March to 14th April as phase I and then it extended from 15th April to 3rd May as phase II in the year 2020. The concentration of all pollutants was usually fall during the lockdown period as compared to their average during the 5-year period over the study area. The results showed that Pre-monsoon (March-May) seasonal AOD for the pandemic year 2020 was decreased by âˆ¼ 23% after lockdown as compared to same season of normal years over the study location. The seasonally averaged AOD reached its peak value in pre-monsoon (0.78 ± 0.09), followed by winter (0.59 ± 0.10) and monsoon (0.52 ± 0.05), with the minimum taking place in post-monsoon (0.38 ± 0.08) season. The monthly average AOD varies from its highest value (0.82 ± 0.18) in May to its lowest value (0.36 ± 0.10) in October for the study period over Guwahati. Tropospheric column NO2 exhibits same seasonality as AOD with highest value (0.21 × 1016 molecules cm-2) in pre-monsoon and lowest value (0.13 × 1016 molecules cm-2) in post-monsoon season which may be due to same source of origination of both NO2 and AOD. Conversely, SO2 does not vary much from the five-year average value during the lockdown period. Significant reduction in PM2.5 mass concentration value during Covid-19 lockdown months has been observed which indicates short term improvement of air quality over Guwahati.

2.
Environ Sci Pollut Res Int ; 29(42): 64096-64111, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35469377

ABSTRACT

Northeast India is considered as one of the major biodiversity hotspots in the world, but the region is underexplored for their microbial biodiversity. Extensive characterization of biological aerosol (bioaerosol) samples collected from various locations of Northeast India was carried out for all four seasons in a year. These were characterized in terms of their constituents, such as pollens, fungal spores, animal debris, and non-biological components, and particulate matters, such as inhalable, thoracic, and alveolic, and finally, the bacterial diversity was determined by DNA-based metagenomic approach. The non-biological (non-viable) component of aerosols is found to vary from 30 to 89% in the pre-monsoon season, which coexists with pollens (4-20%), animal debris (1-24%), and fungal spores (1-17%). The highest number of culturable microbial populations in terms of CFU count was observed in the pre-monsoon samples (i.e., 125.24-632.45 CFU/m3), and the lowest CFU was observed in monsoon season (i.e., 20.83-319.0 CFU/m3). The metagenomic approach with the samples collected during pre-monsoon season showed a total of bacterial 184 OTUs (operational taxonomic units) with 28,028 abundance count comprising 7 major phylum, 6 classes, 10 orders, 15 families, 13 genus, and 8 species of bacteria. The species-level distribution clearly shows the presence of Gammaproteobacteria (52%) most abundantly, followed by Bacilli (21%), Alphaproteobacteria (14%), Betaproteobacteria (5%), Flavobacteria (5%), and Sphingobacteria (3%). It is the first report from the entire Northeast India to uncover spatio-temporal distribution of biological components and bacterial diversity in aerosol samples through a DNA-based metagenomic approach.


Subject(s)
Environmental Monitoring , Particulate Matter , Aerosols/analysis , Bacteria/genetics , India , Metagenome , Metagenomics , Seasons
3.
Langmuir ; 36(33): 9728-9737, 2020 08 25.
Article in English | MEDLINE | ID: mdl-32787115

ABSTRACT

A sessile droplet of a complex fluid exhibits several stages of drying leading to the formation of a final pattern on the substrate. We report such pattern formation in dehydrating droplets of protein (BSA) and salts (MgCl2 and KCl) at various concentrations of the two components (protein and salts) as part of a parametric study for the understanding of complex patterns of dehydrating biofluid droplets (blood and urine), which will eventually be used for diagnosis of bladder cancer. The exact analysis of the biofluid patterns will require a rigorous parametric study; however, the current work provides an initial understanding of the effect of the basic components present in a biofluid droplet. Arrangement of the protein and the salts, due to evaporation, leads to the formation of some very distinctive final structures at the end of the droplet lifetime. Furthermore, these structures can be manipulated by varying the initial ratio of the two components in the solution. MgCl2 forms chains of crystals beyond a threshold initial concentration of protein (>3 wt %). However, the formation of such a crystal is also limited by the maximum concentration of the salt initially present in the droplet (≤1 wt %). On the other hand, KCl forms dendritic and rectangular crystals in the presence of BSA. The formation of these crystals also depends on the relative concentration of salt and protein in the droplet. We also investigated the dried-out patterns in dehydrating droplets of mixed salts (MgCl2 + KCl) and protein. The patterns can be tuned from a continuous dendritic structure to a snow-flake type structure just by altering the initial ratio of the two salts in the mixture, keeping all other parameters constant.


Subject(s)
Salts , Sodium Chloride , Desiccation , Proteins
4.
Environ Pollut ; 252(Pt A): 256-269, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31153030

ABSTRACT

We investigate the distribution of volatile organic compounds (VOCs) over Indian subcontinent during a winter month of January 2011 combining the regional model WRF-Chem (Weather Research and Forecasting model coupled with Chemistry) with ground- and space-based observations and chemical reanalysis. WRF-Chem simulated VOCs are found to be comparable with ground-based observations over contrasting environments of the Indian subcontinent. WRF-Chem results reveal the elevated levels of VOCs (e. g. propane) over the Indo-Gangetic Plain (16 ppbv), followed by the Northeast region (9.1 ppbv) in comparison with other parts of the Indian subcontinent (1.3-8.2 ppbv). Higher relative abundances of propane (27-31%) and ethane (13-17%) are simulated across the Indian subcontinent. WRF-Chem simulated formaldehyde and glyoxal show the western coast, Eastern India and the Indo-Gangetic Plain as the regional hotspots, in a qualitative agreement with the MACC (Monitoring Atmospheric Composition and Climate) reanalysis and satellite-based observations. Lower values of RGF (ratio of glyoxal to formaldehyde <0.04) suggest dominant influences of the anthropogenic emissions on the distribution of VOCs over Indian subcontinent, except the northeastern region where higher RGF (∼0.06) indicates the role of biogenic emissions, in addition to anthropogenic emissions. Analysis of HCHO/NO2 ratio shows a NOx-limited ozone production over India, with a NOx-to-VOC transition regime over central India and IGP. The study highlights a need to initiate in situ observations of VOCs over regional hotspots (Northeast, Central India, and the western coast) based on WRF-Chem results, where different satellite-based observations differ significantly.


Subject(s)
Air Pollutants/analysis , Computer Simulation , Environmental Monitoring/methods , Ozone/analysis , Satellite Imagery , Volatile Organic Compounds/analysis , Climate , Ethane/analysis , Forecasting , Formaldehyde/analysis , Glyoxal/analysis , India , Propane/analysis , Seasons , Weather
5.
Langmuir ; 34(18): 5323-5333, 2018 05 08.
Article in English | MEDLINE | ID: mdl-29659290

ABSTRACT

Spatially varying the ordering of colloids of multiple sizes at micro-nano scales finds application in different industrial processes including manufacturing of photonic crystals. In this work, we showcase a unique physics-based architecture through which we have been able to control the morphology of the precipitates evolving out of the drying of a contact-free droplet at micro to nano length scales. We show that by varying the relative concentration of the larger sized colloids, one can modulate evaporation, subsequent particle transport, and particle ordering at the droplet interface, thereby controlling the rates of certain instabilities like buckling. In this way, we have produced evaporation-induced self-assembly structures (devoid of any substrate effect) with striking topological and surface features. Furthermore, we proved that these instabilities can be further tuned using a measured amount of external heating through the alteration of the evaporation rates. Notwithstanding, we also quantified that the ordering of the mixed colloids varies, in a spatial sense, across the droplet surface, exhibiting unique patterns, porosity, and lattice arrangements, all at the nanoscale. The results assure that the fine-tuning of the macroscale parameters like heating rate and particle loading can be used to fine-tune the micro-nanoscale features in a droplet-based high-throughput bottom-up framework.

6.
Langmuir ; 34(29): 8423-8442, 2018 07 24.
Article in English | MEDLINE | ID: mdl-29470090

ABSTRACT

Evaporating sessile functional droplets act as the fundamental building block that controls the cumulative outcome of many industrial and biological applications such as surface patterning, 3D printing, photonic crystals, and DNA sequencing, to name a few. Additionally, a drying single sessile droplet forms a high-throughput processing technique using low material volume which is especially suitable for medical diagnosis. A sessile droplet also provides an elementary platform to study and analyze fundamental interfacial processes at various length scales ranging from macroscopically observable wetting and evaporation to microfluidic transport to interparticle forces operating at a nanometric length scale. As an example, to ascertain the quality of 3D printing we must understand the fundamental interfacial processes at the droplet scale. In this article, we review the coupled physics of evaporation flow-contact-line-driven particle transport in sessile colloidal droplets and provide methodologies to control the same. Through natural alterations in droplet vaporization, one can change the evaporative pattern and contact line dynamics leading to internal flow which will modulate the final particle assembly in a nontrivial fashion. We further show that control over particle transport can also be exerted by external stimuli which can be thermal, mechanical oscillations, vapor confinement (walled or a fellow droplet), or chemical (surfactant-induced) in nature. For example, significant augmentation of an otherwise evaporation-driven particle transport in sessile droplets can be brought about simply through controlled interfacial oscillations. The ability to control the final morphologies by manipulating the governing interfacial mechanisms in the precursor stages of droplet drying makes it perfectly suitable for fabrication-, mixing-, and diagnostic-based applications.

7.
Langmuir ; 33(49): 14123-14129, 2017 12 12.
Article in English | MEDLINE | ID: mdl-29160710

ABSTRACT

Evaporation dynamics of a particle-laden droplet has been a topic of interest in recent times owing to its widespread applications, ranging from surface patterning to drug delivery systems. The interplay of evaporation-induced internal flow dynamics, contact line dynamics, and nanoparticle self-assembly govern the morphologies of the residual structures. Fine-tuning of these residual structures is thus possible by controlling the governing parameters. A nanoparticle-laden sessile droplet placed on a hydrophobic substrate undergoes buckling phenomenon that results in a domelike structure with cavity on the surface. In the present work, it is shown that the addition of sodium dodecyl sulfate (SDS) surfactant in minute concentrations (0.005-0.02 wt %) can affect the contact line dynamics and subsequent buckling dynamics of a nanoparticle-laden droplet evaporating on a hydrophobic substrate. With increase in the initial SDS concentration, the morphologies of the residual structures show transition from a buckled dome structure to a flat flowerlike shape. Moreover, a critical SDS concentration (>0.0075 wt % in 20 wt % silica) is identified for the complete suppression of buckling instabilities. Last, the effects of droplet spreading on the surface crack dynamics are discussed.

8.
Phys Chem Chem Phys ; 19(36): 24961-24970, 2017 Sep 20.
Article in English | MEDLINE | ID: mdl-28875192

ABSTRACT

We propose a unique contact-free droplet based architecture in which thermally induced instabilities can be used to precisely alter the phase separation behavior in a dynamically asymmetric polymer blend (solution of PS/PVME in toluene) by controlling the external heating rates and concentration of added nanoparticles (multi-walled carbon nanotube particles, MWCNTs). In addition, by tuning the heating rates, distinctly different macroscopic morphologies (hollow shell or globular mass) can be obtained as a final structure in such droplets. Furthermore, the process of separation is temporally aggravated by several orders (about 3-5 orders) as compared to the traditional bulk processing techniques (thin film of blends). Faster production rate and high throughput promise a new spray-based architecture for producing phase separated structures. Addition of MWCNTs in the polymer blend delays the separation phenomenon as it interacts with the polymers and alters the stability criteria. Furthermore, addition of nanoparticles also introduces a different mode of instability at higher external heating rates. Heat accumulation due to particles causes boiling of the solvent (toluene) trapped inside the droplet which leads to subsequent explosion of the entire droplet, in addition to the phase separation phenomena (at the microscopic level). Volumetric expansion due to bubble growth leads to the formation of a unique hollow structure which is distinctly different from the globular mass obtained at lower heating rates.

9.
Phys Chem Chem Phys ; 18(47): 32477-32485, 2016 Nov 30.
Article in English | MEDLINE | ID: mdl-27869260

ABSTRACT

We report thermally induced rapid phase separation in PS/PVME polymer blends using a unique contact free droplet based architecture. De-mixing of homogeneous blends due to inter component dynamic asymmetry is aggravated by the externally supplied heat. Separation of polymer blends is usually investigated in the bulk which is a tedious process and requires several hours for completion. Alternatively, separation in droplet configuration reduces the process timescale by about 3-5 orders due to a constrained micron-sized domain [fast processing and high throughput] while maintaining similar separation morphologies as in the bulk. We observed the effect of heating rates on the phase separation length and timescales. Furthermore, the separation length scale can be precisely controlled across one order by simply tuning the heating rate. The methodology can be scaled up for applications ranging from surface patterning to pharmaceutics.

10.
Phys Rev E ; 93(3): 033103, 2016 Mar.
Article in English | MEDLINE | ID: mdl-27078443

ABSTRACT

Controlled breakup of droplets using heat or acoustics is pivotal in applications such as pharmaceutics, nanoparticle production, and combustion. In the current work we have identified distinct thermal acoustics-induced deformation regimes (ligaments and bubbles) and breakup dynamics in externally heated acoustically levitated bicomponent (benzene-dodecane) droplets with a wide variation in volatility of the two components (benzene is significantly more volatile than dodecane). We showcase the physical mechanism and universal behavior of droplet surface caving in leading to the inception and growth of ligaments. The caving of the top surface is governed by a balance between the acoustic pressure field and the restrictive surface tension of the droplet. The universal collapse of caving profiles for different benzene concentration (<70% by volume) is shown by using an appropriate time scale obtained from force balance. Continuous caving leads to the formation of a liquid membrane-type structure which undergoes radial extension due to inertia gained during the precursor phase. The membrane subsequently closes at the rim and the kinetic energy leads to ligament formation and growth. Subsequent ligament breakup is primarily Rayleigh-Plateau type. The breakup mode shifts to diffusional entrapment-induced boiling with an increase in concentration of the volatile component (benzene >70% by volume). The findings are portable to any similar bicomponent systems with differential volatility.

11.
Langmuir ; 32(11): 2591-600, 2016 Mar 22.
Article in English | MEDLINE | ID: mdl-26938984

ABSTRACT

Dynamics of contact free (levitated) drying of nanofluid droplets is ubiquitous in many application domains ranging from spray drying to pharmaceutics. Controlling the final morphology (macro to micro scales) of the dried out sample poses some serious challenges. Evaporation of solvent and agglomeration of particles leads to porous shell formation in acoustically levitated nanosilica droplets. The capillary pressure due to evaporation across the menisci at the nanoscale pores causes buckling of the shell which leads to ring and bowl shaped final structures. Acoustics plays a crucial role in flattening of droplets which is a prerequisite for initiation of buckling in the shell. Introduction of mixed nanocolloids (sodium dodecyl sulfate + nanosilica) reduces evaporation rate, disrupts formation of porous shell, and enhances mechanical strength of the shell, all of which restricts the process of buckling. Although buckling is completely arrested in such surfactant added droplets, controlled external heating using laser enhances evaporation through the pores in the shell due to thermally induced structural changes and rearrangement of SDS aggregates which reinitializes buckling in such droplets. Furthermore, inclusion of anilinium hydrochloride into the nanoparticle laden droplets produces ions which adsorb and modify the morphology of sodium dodecyl sulfate crystals and reinitializes buckling in the shell (irrespective of external heating conditions). The kinetics of buckling is determined by the combined effect of morphology of the colloidal particles, particle/aggregate diffusion rate within the droplet, and the rate of evaporation of water. The buckling dynamics leads to cavity formation which grows subsequently to yield final structures with drastically different morphological features. The cavity growth is controlled by evaporation through the nanoscale pores and exhibits a universal trend irrespective of heating rate and nanoparticle type.


Subject(s)
Colloids/radiation effects , Nanoparticles/radiation effects , Surface Properties , Aniline Compounds/chemistry , Colloids/chemistry , Hot Temperature , Light , Nanoparticles/chemistry , Photoacoustic Techniques , Porosity , Silicon Dioxide/chemistry , Sodium Dodecyl Sulfate/chemistry
12.
Environ Sci Pollut Res Int ; 21(10): 6696-713, 2014 May.
Article in English | MEDLINE | ID: mdl-24526397

ABSTRACT

South Asia, particularly the Indo-Gangetic Plains and foothills of the Himalayas, has been found to be a major source of pollutant gases and particles affecting the regional as well as the global climate. Inventories of greenhouse gases for the South Asian region, particularly the sub-Himalayan region, have been inadequate. Hence, measurements of the gases are important from effective characterization of the gases and their climate effects. The diurnal, seasonal, and annual variation of surface level O3 measured for the first time in northeast India at Dibrugarh (27.4° N, 94.9° E, 111 m amsl), a sub-Himalayan location in the Brahmaputra basin, from November 2009 to May 2013 is presented. The effect of the precursor gases NO x and CO measured simultaneously during January 2012-May 2013 and the prevailing meteorology on the growth and decay of O3 has been studied. The O3 concentration starts to increase gradually after sunrise attaining a peak level around 1500 hours LT and then decreases from evening till sunrise next day. The highest and lowest monthly maximum concentration of O3 is observed in March (42.9 ± 10.3 ppb) and July (17.3 ± 7.0 ppb), respectively. The peak in O3 concentration is preceded by the peaks in NO x and CO concentrations which maximize during the period November to March with peak values of 25.2 ± 21.0 ppb and 1.0 ± 0.4 ppm, respectively, in January. Significant nonlinear correlation is observed between O3 and NO, NO2, and CO. National Atmospheric and Oceanic Administration Hybrid Single-Particle Lagrangian Integrated Trajectory back-trajectory and concentration weighted trajectory analysis carried out to delineate the possible airmass trajectory and to identify the potential source region of NO x and O3 concentrations show that in post-monsoon and winter, majority of the trajectories are confined locally while in pre-monsoon and monsoon, these are originated at the Indo-Gangetic plains, Bangladesh, and Bay of Bengal.


Subject(s)
Air Pollutants/analysis , Environmental Monitoring , Ozone/analysis , Air Pollutants/chemistry , Climate , India , Meteorological Concepts , Meteorology , Ozone/chemistry , Seasons
SELECTION OF CITATIONS
SEARCH DETAIL
...