Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 51
Filter
Add more filters











Publication year range
1.
ACS Nano ; 2024 Sep 11.
Article in English | MEDLINE | ID: mdl-39259863

ABSTRACT

The increasing use of multiwalled carbon nanotubes (MWCNTs) could increase the risk of allergic lung disease in occupational or consumer settings. We previously reported that MWCNTs exacerbated allergic lung disease in mice induced by extract from house dust mites (HDM), a common cause of asthma in humans. Because MWCNTs avidly bind biomolecules to form protein coronas that can modify immunotoxicity, we hypothesized that exacerbation of allergic lung disease in mice caused by coexposure to MWCNTs and HDM extract was due to the formation of an allergen corona. In a first set of experiments, male and female C57BL/6J mice were coexposed to MWCNTs and HDM extract over 3 weeks compared to MWCNTs or HDM extract alone. In a second set of experiments, mice were exposed to pristine MWCNTs or MWCNTs with an HDM allergen corona (HDM-MWCNTs). HDM-MWCNTs were formed by incubating MWCNTs with HDM extract, where ∼7% of proteins adsorbed to MWCNTs, including Der p 1 and Der p 2. At necropsy, bronchoalveolar lavage fluid was collected from lungs to assess lactate dehydrogenase, total protein and inflammatory cells, while lung tissue was used for histopathology, qPCR, and Western blotting. Compared to MWCNTs or HDM extract alone, coexposure to MWCNTs and HDM extract or exposure to HDM-MWCNTs increased pathological outcomes associated with allergic lung disease (eosinophilia, fibrosis, mucous cell metaplasia), increased mRNAs associated with fibrosis (Col1A1, Arg1) and enhanced STAT6 phosphorylation in lung tissue. These findings indicated that exacerbation of HDM-induced allergic lung disease by MWCNTs is due to an allergen corona.

2.
J Phys Chem B ; 128(37): 8878-8885, 2024 Sep 19.
Article in English | MEDLINE | ID: mdl-39231525

ABSTRACT

We encounter titanium dioxide nanoparticles (TiO2 NPs) throughout our daily lives in the form of food coloring, cosmetics, and industrial materials. They are used on a massive industrial scale, with over 1 million metric tons in the global market. For the workers who process these materials, inhalation is a major concern. The goal of our current research is to provide a direct comparison of the three major types of TiO2 NPs (P25, E171, R101) in terms of surface characterization, cellular response, and in vivo response following introduction into the lungs of mice. In both cellular and in vivo experiments, we observe a pro-inflammatory response to the P25 TiO2 NPs that is not observed in the E171 or R101 TiO2 NPs at mass-matched concentrations. Cellular experiments measured a cytokine, TNF-α, as a marker of a pro-inflammatory response. In vivo experiments in mice measured the number of immune cells and four pro-inflammatory cytokines (IL-6, MIP-2, IP-10, and MCP-1) present in bronchoalveolar lavage fluid. A detailed physical and chemical characterization of the TiO2 NPs shows that the P25 TiO2 NPs are distinguished by smaller primary particles suggesting that samples matched by mass contain a larger number of P25 TiO2 NPs. Cellular dose-response measurements with the P25, E171, and R101 TiO2 NPs support this hypothesis showing increased TNF-α release by macrophages as a function of TiO2 NP dose. Overall, this direct comparison of the three major types of TiO2 NPs shows that the number of particles in a dose, which is dependent on the particle diameter, is a key parameter in TiO2 NP-induced inflammation.


Subject(s)
Titanium , Titanium/chemistry , Titanium/pharmacology , Animals , Mice , Catalysis , Cytokines/metabolism , Bronchoalveolar Lavage Fluid/chemistry , Bronchoalveolar Lavage Fluid/cytology , Nanoparticles/chemistry , Lung/drug effects , Lung/metabolism , Metal Nanoparticles/chemistry , Photochemical Processes , Particle Size , Tumor Necrosis Factor-alpha/metabolism
3.
Environ Sci Nano ; 11(1): 324-335, 2024 Jan 01.
Article in English | MEDLINE | ID: mdl-38577066

ABSTRACT

Multi-walled carbons nanotubes (MWCNTs) are used in materials for the construction, automotive, and aerospace industries. Workers and consumers are exposed to these materials via inhalation. Existing recommended exposure limits are based on MWCNT exposures that do not take into account more realistic co-exposures. Our goal was to understand how a common allergen, house dust mites, interacts with pristine MWCNTs and lung fluid proteins. We used gel electrophoresis, western blotting, and proteomics to characterize the composition of the allergen corona formed from house dust mite extract on the surface of MWCNTs. We found that the corona is dominated by der p 2, a protein associated with human allergic responses to house dust mites. Der p 2 remains adsorbed on the surface of the MWCNTs following subsequent exposures to lung fluid proteins. The high concentration of der p 2, localized on surface of MWCNTs, has important implications for house dust mite-induced allergies and asthma. This research provides a detailed characterization of the complex house dust mite-lung fluid protein coronas for future cellular and in vivo studies. These studies will help to address the molecular and biochemical mechanisms underlying the exacerbation of allergic lung disease by nanomaterials.

4.
Proc Natl Acad Sci U S A ; 121(11): e2319634121, 2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38442162

ABSTRACT

Autoimmune and inflammatory diseases are highly complex, limiting treatment and the development of new therapies. Recent work has shown that cell-free DNA bound to biological microparticles is linked to systemic lupus erythematosus, a prototypic autoimmune disease. However, the heterogeneity and technical challenges associated with the study of biological particles have hindered a mechanistic understanding of their role. Our goal was to develop a well-controlled DNA-particle model system to understand how DNA-particle complexes affect cells. We first characterized the adsorption of DNA on the surface of polystyrene nanoparticles (200 nm and 2 µm) using transmission electron microscopy, dynamic light scattering, and colorimetric DNA concentration assays. We found that DNA adsorbed on the surface of nanoparticles was resistant to degradation by DNase 1. Macrophage cells incubated with the DNA-nanoparticle complexes had increased production of pro-inflammatory cytokines tumor necrosis factor alpha (TNF-α) and interleukin 6 (IL-6). We probed two intracellular DNA sensing pathways, toll-like receptor 9 (TLR9) and cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING), to determine how cells sense the DNA-nanoparticle complexes. We found that the cGAS-STING pathway is the primary route for the interaction between DNA-nanoparticles and macrophages. These studies provide a molecular and cellular-level understanding of DNA-nanoparticle-macrophage interactions. In addition, this work provides the mechanistic information necessary for future in vivo experiments to elucidate the role of DNA-particle interactions in autoimmune diseases, providing a unique experimental framework to develop novel therapeutic approaches.


Subject(s)
Autoimmune Diseases , Lupus Erythematosus, Systemic , Humans , DNA , Tumor Necrosis Factor-alpha , Nucleotidyltransferases
5.
Environ Sci Nano ; 10(9): 2427-2436, 2023 Sep 01.
Article in English | MEDLINE | ID: mdl-38009084

ABSTRACT

Inhalation is a major exposure route to nanoparticles. Following inhalation, nanoparticles first interact with the lung lining fluid, a complex mixture of proteins, lipids, and mucins. We measure the concentration and composition of lung fluid proteins adsorbed on the surface of titanium dioxide (TiO2) nanoparticles. Using proteomics, we find that lung fluid results in a unique protein corona on the surface of the TiO2 nanoparticles. We then measure the expression of three cytokines (interleukin 6 (IL-6), tumor necrosis factor-alpha (TNF-α), and macrophage inflammatory protein 2 (MIP-2)) associated with lung inflammation. We find that the corona formed from lung fluid leads to elevated expression of these cytokines in comparison to bare TiO2 nanoparticles or coronas formed from serum or albumin. These experiments show that understanding the concentration and composition of the protein corona is essential for understanding the pulmonary response associated with human exposure to nanoparticles.

6.
Biophys J ; 122(7): 1355-1363, 2023 04 04.
Article in English | MEDLINE | ID: mdl-36869590

ABSTRACT

Essential cellular processes such as metabolism, protein synthesis, and autophagy require the intracellular transport of membrane-bound vesicles. The importance of the cytoskeleton and associated molecular motors for transport is well documented. Recent research has suggested that the endoplasmic reticulum (ER) may also play a role in vesicle transport through a tethering of vesicles to the ER. We use single-particle tracking fluorescence microscopy and a Bayesian change-point algorithm to characterize vesicle motility in response to the disruption of the ER, actin, and microtubules. This high-throughput change-point algorithm allows us to efficiently analyze thousands of trajectory segments. We find that palmitate-mediated disruption of the ER leads to a significant decrease in vesicle motility. A comparison with the disruption of actin and microtubules shows that disruption of the ER has a significant impact on vesicle motility, greater than the disruption of actin. Vesicle motility was dependent on cellular region, with greater motility in the cell periphery than the perinuclear region, possibly due to regional differences in actin and the ER. Overall, these results suggest that the ER is an important factor in vesicle transport.


Subject(s)
Actins , Endoplasmic Reticulum , Actins/metabolism , Bayes Theorem , Endoplasmic Reticulum/metabolism , Cytoskeleton/metabolism , Microtubules/metabolism
7.
Anal Bioanal Chem ; 414(24): 7265-7275, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36018335

ABSTRACT

Nanoparticles in contact with proteins form a "corona" of proteins adsorbed on the nanoparticle surface. Subsequent biological responses are then mediated by the adsorbed proteins rather than the bare nanoparticles. The use of nanoparticles as nanomedicines and biosensors would be greatly improved if researchers were able to predict which specific proteins will adsorb on a nanoparticle surface. We use a recently developed automated workflow with a liquid handling robot and low-cost proteomics to determine the concentration and composition of the protein corona formed on carboxylate-modified iron oxide nanoparticles (200 nm) as a function of incubation time and serum concentration. We measure the concentration of the resulting protein corona with a colorimetric assay and the composition of the corona with proteomics, reporting both abundance and enrichment relative to the fetal bovine serum (FBS) proteins used to form the corona. Incubation time was found to be an important parameter for corona concentration and composition at high (100% FBS) incubation concentrations, with only a slight effect at low (10%) FBS concentrations. In addition to these findings, we describe two methodological advances to help reduce the cost associated with protein corona experiments. We have automated the digest step necessary for proteomics and measured the variability between triplicate samples at each stage of the proteomics experiments. Overall, these results demonstrate the importance of understanding the multiple parameters that influence corona formation, provide new tools for corona characterization, and advance bioanalytical research in nanomaterials.


Subject(s)
Nanoparticles , Protein Corona , Nanomedicine , Proteomics , Serum Albumin, Bovine
8.
Biophys J ; 121(7): 1205-1218, 2022 04 05.
Article in English | MEDLINE | ID: mdl-35202608

ABSTRACT

Lysosomes are membrane-bound organelles that serve as the endpoint for endocytosis, phagocytosis, and autophagy, degrading the molecules, pathogens, and organelles localized within them. These cellular functions require intracellular transport. We use fluorescence microscopy to characterize the motion of lysosomes as a function of intracellular region, perinuclear or periphery, and lysosome diameter. Single-particle tracking data are complemented by changepoint identification and analysis of a mathematical model for state switching. We first classify lysosomal motion as motile or stationary. We then study how lysosome location and diameter affects the proportion of time spent in each state and quantify the speed during motile periods. We find that the proportion of time spent stationary is strongly region dependent, with significantly decreased motility in the perinuclear region. Increased lysosome diameter only slightly decreases speed. Overall, these results demonstrate the importance of decomposing particle trajectories into qualitatively different behaviors before conducting population-wide statistical analysis. Our results suggest that intracellular region is an important factor to consider in studies of intracellular transport.


Subject(s)
Endocytosis , Lysosomes , Autophagy , Microscopy, Fluorescence , Phagocytosis
9.
Biointerphases ; 15(5): 051006, 2020 10 01.
Article in English | MEDLINE | ID: mdl-33003950

ABSTRACT

There has been much recent interest in the protein "corona," the nonspecific adsorption of proteins on the surface of nanoparticles used in biological applications. This research investigates an analogous DNA corona. We find that particles (200 nm and 1 µm) incubated with DNA form a DNA corona, with a higher concentration of DNA adsorbed on the surface of cationic nanoparticles. With protein present, a combined DNA and protein corona is formed although DNA in solution displaces protein from the nanoparticle surface. Displacement of protein from the nanoparticle surface is dependent on the concentration of DNA in solution and was also observed for planar surfaces. Overall, we expect this investigation of the DNA corona to be important for nanomedicine applications, as well as disease states, especially systemic lupus erythematosus, in which biological particles with bound DNA are important mediators of inflammation and thrombosis.


Subject(s)
DNA/chemistry , Nanoparticles/chemistry , Protein Corona/chemistry , Adsorption , Animals , Cations/chemistry , Cattle , DNA/metabolism , Nanoparticles/metabolism , Polystyrenes/chemistry , Serum Albumin, Bovine/chemistry , Serum Albumin, Bovine/metabolism , Surface Properties
10.
Chem Res Toxicol ; 33(11): 2872-2879, 2020 11 16.
Article in English | MEDLINE | ID: mdl-33064449

ABSTRACT

Titanium dioxide (TiO2) particles are a common ingredient in food, providing the bright white color for many candies, gums, and frostings. While ingestion of these materials has been examined previously, few studies have examined the effect of these particles on lung cells. Inhalation is an important exposure pathway for workers processing these foods and, more recently, home users who purchase these particles directly. We examine the response of lung cells to food-grade TiO2 particles using a combination of fluorescence microscopy and RT-PCR. These experiments show that TiO2 particles generate intracellular reactive oxygen species, specifically superoxide, and alter expression of two epigenetic modifiers, histone deacetylase 9 (HDAC9) and HDAC10. We use a protein corona formed from superoxide dismutase (SOD), an enzyme that scavenges superoxide, to probe the relationship between TiO2 particles and superoxide generation. These experiments show that low, non-cytotoxic, concentrations of food-grade TiO2 particles lead to cellular responses, including altering two enzymes responsible for epigenetic modifications. This production of superoxide and change in epigenetic modifiers could affect human health following inhalation. We expect this research will motivate future in vivo experiments examining the pulmonary response to food-grade TiO2 particles.


Subject(s)
Epigenesis, Genetic/drug effects , Histone Deacetylases/metabolism , Repressor Proteins/antagonists & inhibitors , Superoxides/metabolism , Titanium/pharmacology , Animals , Epigenesis, Genetic/genetics , Histone Deacetylases/genetics , Humans , Mice , Particle Size , Repressor Proteins/genetics , Repressor Proteins/metabolism , Superoxides/chemistry , Surface Properties , Titanium/chemistry , Tumor Cells, Cultured
11.
Anal Bioanal Chem ; 412(24): 6543-6551, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32500258

ABSTRACT

Nanoparticles used in biological settings are exposed to proteins that adsorb on the surface forming a protein corona. These adsorbed proteins dictate the subsequent cellular response. A major challenge has been predicting what proteins will adsorb on a given nanoparticle surface. Instead, each new nanoparticle and nanoparticle modification must be tested experimentally to determine what proteins adsorb on the surface. We propose that any future predictive ability will depend on large datasets of protein-nanoparticle interactions. As a first step towards this goal, we have developed an automated workflow using a liquid handling robot to form and isolate protein coronas. As this workflow depends on magnetic separation steps, we test the ability to embed magnetic nanoparticles within a protein nanoparticle. These experiments demonstrate that magnetic separation could be used for any type of nanoparticle in which a magnetic core can be embedded. Higher-throughput corona characterization will also require lower-cost approaches to proteomics. We report a comparison of fast, low-cost, and standard, slower, higher-cost liquid chromatography coupled with mass spectrometry to identify the protein corona. These methods will provide a step forward in the acquisition of the large datasets necessary to predict nanoparticle-protein interactions.


Subject(s)
Nanoparticles/chemistry , Protein Corona/analysis , Proteomics/methods , Animals , Big Data/economics , Cattle , Humans , Nanoparticles/ultrastructure , Ovalbumin/analysis , Proteomics/economics
12.
Bioconjug Chem ; 31(5): 1354-1361, 2020 05 20.
Article in English | MEDLINE | ID: mdl-32223145

ABSTRACT

Titanium dioxide (TiO2) nanoparticles are used on a massive scale in commercial and industrial products. Of specific concern is how the inhalation of these nanoparticles in a manufacturing setting may affect human health. We examine the cellular response to TiO2 nanoparticles using a combination of cell-free spectroscopic assays, fluorescence microscopy, Western blotting, and TiO2 nanoparticle surface modifications. These experiments show that TiO2 nanoparticles generate superoxide, both in solution and in cells, and this intracellular superoxide decreases expression of histone deacetylase 9 (HDAC9), an epigenetic modifier. We use protein coronas formed from superoxide dismutase (SOD) and catalase, enzymes that scavenge reactive oxygen species (ROS), to probe the relationship between TiO2 nanoparticles, ROS, and the subsequent cellular response. These protein coronas provide nanoparticle-localized scavengers that demonstrate that the nanoparticles are the source of the intracellular superoxide. Importantly, the use of a SOD corona or surface passivated TiO2 nanoparticles prevents the decrease of HDAC9. These experiments elucidate the underlying mechanism of TiO2 nanoparticle-mediated cellular responses including oxidative stress and changes in gene expression. They also provide the first demonstration of a protein corona as a tool for probing cellular responses to nanoparticles. Overall, this research shows that low, nontoxic concentrations of TiO2 nanoparticles alter an enzyme responsible for epigenetic modifications, which points to concerns regarding long-term exposures in manufacturing settings.


Subject(s)
Epigenesis, Genetic/drug effects , Histone Deacetylases/metabolism , Intracellular Space/drug effects , Nanoparticles/toxicity , Repressor Proteins/metabolism , Superoxides/metabolism , Titanium/chemistry , Titanium/pharmacology , A549 Cells , Dose-Response Relationship, Drug , Humans , Intracellular Space/metabolism , Oxidative Stress/drug effects , Oxidative Stress/genetics
13.
Bioelectricity ; 2(3): 221-228, 2020 Sep 01.
Article in English | MEDLINE | ID: mdl-34476354

ABSTRACT

Background: The use of electricity to mediate bacterial growth is unique in providing spatial control, but requires a more detailed understanding. Methods: We use two gold wires on a glass coverslip with an overlayer of agar to image Escherichia coli cells with brightfield and fluorescence microscopy while simultaneously applying a voltage. Cells outside of the wires provide a control population to measure cell growth as a function of voltage, rather than any difference in culture conditions or growth phase. Results: An applied voltage suppresses the fraction of E. coli undergoing elongation and division with recovery to control values when the voltage is removed. Depolarization is observed over the same voltage range suggesting a membrane potential-mediated response. Conclusions: Our experiments identify and use subcytotoxic voltages to measure differences in the fraction of E. coli cells elongating and dividing as a function of applied voltage. It is hoped that this research will inform the developing field of bacterial electrophysiology.

14.
J Chem Phys ; 151(13): 130901, 2019 Oct 07.
Article in English | MEDLINE | ID: mdl-31594353

ABSTRACT

Nanoparticles present in any biological environment are exposed to extracellular proteins. These proteins adsorb on the surface of the nanoparticle forming a "protein corona." These proteins control the interaction of nanoparticles with cells. The interaction of proteins with the nanoparticle surface is governed by physical chemistry. Understanding this process requires spectroscopy, microscopy, and computational tools that are familiar to physical chemists. This perspective provides an overview of the protein corona along with two future directions: first, the need for new computational approaches, including machine learning, to predict corona formation and second, the extension of protein corona studies to more complex environments ranging from lung fluids to waste water treatment.


Subject(s)
Nanoparticles/chemistry , Protein Corona/chemistry , Adsorption , Animals , Chemistry, Physical/methods , Humans , Machine Learning
15.
Annu Rev Phys Chem ; 70: 199-218, 2019 06 14.
Article in English | MEDLINE | ID: mdl-30883272

ABSTRACT

Understanding the cellular basis of human health and disease requires the spatial resolution of microscopy and the molecular-level details provided by spectroscopy. This review highlights imaging methods at the intersection of microscopy and spectroscopy with applications in cell biology. Imaging methods are divided into three broad categories: fluorescence microscopy, label-free approaches, and imaging tools that can be applied to multiple imaging modalities. Just as these imaging methods allow researchers to address new biological questions, progress in biological sciences will drive the development of new imaging methods. We highlight four topics in cell biology that illustrate the need for new imaging tools: nanoparticle-cell interactions, intracellular redox chemistry, neuroscience, and the increasing use of spheroids and organoids. Overall, our goal is to provide a brief overview of individual imaging methods and highlight recent advances in the use of microscopy for cell biology.


Subject(s)
Cell Biology/trends , Cytological Techniques/methods , Microscopy/methods , Animals , Cytological Techniques/trends , Humans , Microscopy/trends , Scattering, Radiation , Spectrum Analysis/methods , Spectrum Analysis/trends
16.
Biointerphases ; 14(1): 010801, 2019 02 25.
Article in English | MEDLINE | ID: mdl-30803241

ABSTRACT

The goal of this review is to highlight materials that show exciting promise for either entirely new cellular-level applications or new approaches to long-standing biological challenges. The authors start with two more established materials, graphene and carbon nanotubes, and then progress to conducting polymers, followed by an overview of the microresonators, nanowires, and spasers used as intracellular lasers. These materials provide new approaches to gene and drug delivery, cellular regeneration, mechanical sensing, imaging, and the modulation and recording of cellular activity. Of specific interest is the comparison of these materials with existing technologies, the method of cellular delivery, and the all-encompassing challenge of biocompatibility. Concluding remarks examine the extension of these materials from cellular-level experiments to in vivo applications, including the method of activation: light, electricity, and ultrasound. Overall, these materials and their associated applications illustrate the most recent advances in material-cell interactions.


Subject(s)
Biocompatible Materials/chemistry , Biocompatible Materials/isolation & purification , Cytological Techniques/methods , Cytological Techniques/trends , Nanostructures/chemistry , Biocompatible Materials/pharmacology
17.
RSC Adv ; 9(43): 25039-25047, 2019.
Article in English | MEDLINE | ID: mdl-35321350

ABSTRACT

TiO2 nanoparticles are widely used in consumer products and industrial applications, yet little is understood regarding how the inhalation of these nanoparticles impacts long-term health. This is especially important for the occupational safety of workers who process these materials. We used RNA sequencing to probe changes in gene expression and fluorescence microscopy to image intracellular reactive oxygen species (ROS) in human lung cells incubated with low, non-cytotoxic, concentrations of TiO2 nanoparticles. Experiments were designed to measure changes in gene expression following an acute exposure to TiO2 nanoparticles and changes inherited by progeny cells. We observe that TiO2 nanoparticles lead to significant (>2000 differentially expressed genes) changes in gene expression following a 24 hour incubation. Following this acute exposure, the response dissipates with only 34 differentially expressed genes in progeny cells. The progeny cells adapt to this initial exposure, observed when re-challenged with a second acute TiO2 nanoparticle exposure. Accompanying these changes in gene expression is the production of intracellular ROS, specifically superoxide, along with changes in oxidative stress-related genes. These experiments suggest that TiO2 nanoparticles adapt to oxidative stress through transcriptional changes over multiple generations of cells.

18.
Biophys J ; 115(2): 209-216, 2018 07 17.
Article in English | MEDLINE | ID: mdl-29650368

ABSTRACT

Nanoparticles used in cellular applications encounter free serum proteins that adsorb onto the surface of the nanoparticle, forming a protein corona. This protein layer controls the interaction of nanoparticles with cells. For nanomedicine applications, it is important to consider how intravenous injection and the subsequent shear flow will affect the protein corona. Our goal was to determine if shear flow changed the composition of the protein corona and if these changes affected cellular binding. Colorimetric assays of protein concentration and gel electrophoresis demonstrate that polystyrene nanoparticles subjected to flow have a greater concentration of serum proteins adsorbed on the surface, especially plasminogen. Plasminogen, in the absence of nanoparticles, undergoes changes in structure in response to flow, characterized by fluorescence and circular dichroism spectroscopy. The protein-nanoparticle complexes formed from fetal bovine serum after flow had decreased cellular binding, as measured with flow cytometry. In addition to the relevance for nanomedicine, these results also highlight the technical challenges of protein corona studies. The composition of the protein corona was highly dependent on the initial mixing step: rocking, vortexing, or flow. Overall, these results reaffirm the importance of the protein corona in nanoparticle-cell interactions and point toward the challenges of predicting corona composition based on nanoparticle properties.


Subject(s)
Hydrodynamics , Protein Corona/chemistry , Adsorption , Animals , Cattle , HeLa Cells , Humans , Nanoparticles/chemistry , Plasminogen/chemistry , Plasminogen/metabolism , Polystyrenes/chemistry
19.
J Phys Chem B ; 122(3): 1009-1016, 2018 01 25.
Article in English | MEDLINE | ID: mdl-29111728

ABSTRACT

Nanoparticles, especially metal oxide nanoparticles, are used in a wide range of commercial and industrial applications that result in direct human contact, such as titanium dioxide nanoparticles in paints, food colorings, and cosmetics, or indirectly through release of nanoparticle-containing materials into the environment. Workers who process nanoparticles for downstream applications are exposed to especially high concentrations of nanoparticles. For physical chemists, nanoparticles present an interesting area of study as the small size of nanoparticles changes the properties from that of the bulk material, leading to novel properties and reactivity. For the public health community, this reduction in particle size means that exposure limits and outcomes that were determined from bulk material properties are not necessarily valid. Informed determination of exposure limits requires a fundamental understanding of how nanoparticles interact with cells. This Feature Article highlights the areas of intersection between physical chemistry and public health in understanding nanoparticle-cell interactions, with a focus on titanium dioxide nanoparticles. It provides an overview of recent research examining the interaction of titanium dioxide nanoparticles with cells in the absence of UV light and provides recommendations for additional nanoparticle-cell research in which physical chemistry expertise could help to inform the public health community.


Subject(s)
Cell Communication , Nanoparticles/chemistry , Public Health , Humans , Particle Size , Ultraviolet Rays
20.
Sci Rep ; 7(1): 10402, 2017 09 04.
Article in English | MEDLINE | ID: mdl-28871198

ABSTRACT

We describe the use of PEDOT:PSS conducting polymer microwires to modulate action potentials in single cells. PEDOT: PSS conducting polymer microwires are electrochemically synthesized with diameters ranging from 860 nm to 4.5 µm and conductivities of ~30 S/cm. The length of the microwires is controlled by the spacing of the electrodes used for the electrochemical polymerization. We demonstrate the use of these microwires to control the action potentials of cardiomyocytes, showing that the cellular contractions match the frequency of the applied voltage. Membrane integrity assays confirm that the voltage delivered by the wires does not damage cells. We expect the conducting polymer microwires will be useful as minimally invasive devices to control the electrical properties of cells with high spatial precision.


Subject(s)
Bridged Bicyclo Compounds, Heterocyclic/chemistry , Myocytes, Cardiac/cytology , Nanowires/chemistry , Polymers/chemistry , Polystyrenes/chemistry , Action Potentials , Animals , Cell Line , Electric Conductivity , Electrodes , HeLa Cells , Humans , Rats , Single-Cell Analysis
SELECTION OF CITATIONS
SEARCH DETAIL