Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Ecology ; 104(10): e4151, 2023 10.
Article in English | MEDLINE | ID: mdl-37535019

ABSTRACT

Alternative migratory strategies can coexist within animal populations and species. Anthropogenic impacts can shift the fitness balance between these strategies leading to changes in migratory behaviors. Yet some of the mechanisms that drive such changes remain poorly understood. Here we investigate the phenotypic differences, and the energetic, behavioral, and fitness trade-offs associated with four different movement strategies (long-distance and short-distance migration, and regional and local residency) in a population of white storks (Ciconia ciconia) that has shifted its migratory behavior over the last decades, from fully long-distance migration toward year-round residency. To do this, we tracked 75 adult storks fitted with GPS/GSM loggers with tri-axial acceleration sensors over 5 years, and estimated individual displacement, behavior, and overall dynamic body acceleration, a proxy for activity-related energy expenditure. Additionally, we monitored nesting colonies to assess individual survival and breeding success. We found that long-distance migrants traveled thousands of kilometers more throughout the year, spent more energy, and >10% less time resting compared with short-distance migrants and residents. Long-distance migrants also spent on average more energy per unit of time while foraging, and less energy per unit of time while soaring. Migratory individuals also occupied their nests later than resident ones, later occupation led to later laying dates and a lower number of fledglings. However, we did not find significant differences in survival probability. Finally, we found phenotypic differences in the migratory probability, as smaller sized individuals were more likely to migrate, and they might be incurring higher energetic and fitness costs than larger ones. Our results shed light on the shifting migratory strategies in a partially migratory population and highlight the nuances of anthropogenic impacts on species behavior, fitness, and evolutionary dynamics.


Subject(s)
Animal Migration , Birds , Humans , Animals , Seasons , Breeding , Energy Metabolism
2.
Am Nat ; 201(2): 269-286, 2023 02.
Article in English | MEDLINE | ID: mdl-36724470

ABSTRACT

AbstractPopulation responses to environmental variation ultimately depend on within-individual and among-individual variation in labile phenotypic traits that affect fitness and resulting episodes of selection. Yet complex patterns of individual phenotypic variation arising within and between time periods, as well as associated variation in selection, have not been fully conceptualized or quantified. We highlight how structured patterns of phenotypic variation in dichotomous threshold traits can theoretically arise and experience varying forms of selection, shaping overall phenotypic dynamics. We then fit novel multistate models to 10 years of band-resighting data from European shags to quantify phenotypic variation and selection in a key threshold trait underlying spatioseasonal population dynamics: seasonal migration versus residence. First, we demonstrate substantial among-individual variation alongside substantial between-year individual repeatability in within-year phenotypic variation ("flexibility"), with weak sexual dimorphism. Second, we demonstrate that between-year individual variation in within-year phenotypes ("supraflexibility") is structured and directional, consistent with the threshold trait model. Third, we demonstrate strong survival selection on within-year phenotypes-and hence on flexibility-that varies across years and sexes, including episodes of disruptive selection representing costs of flexibility. By quantitatively combining these results, we show how supraflexibility and survival selection on migratory flexibility jointly shape population-wide phenotypic dynamics of seasonal movement.


Subject(s)
Animal Migration , Birds , Animals , Seasons , Animal Migration/physiology , Population Dynamics , Birds/physiology , Phenotype , Selection, Genetic
3.
PLoS One ; 17(10): e0275569, 2022.
Article in English | MEDLINE | ID: mdl-36223369

ABSTRACT

Synchrony can have important consequences for long-term metapopulations persistence, community dynamics and ecosystems functioning. While the causes and consequences of intra-specific synchrony on population size and demographic rates have received considerable attention only a few factors that may affect inter-specific synchrony have been described. We formulate the hypothesis that food subsidies can buffer the influence of environmental stochasticity on community dynamics, disrupting and masking originally synchronized systems. To illustrate this hypothesis, we assessed the consequences of European policies implementation affecting subsidy availability on the temporal synchrony of egg volume as a proxy of breeding investment in two sympatric marine top predators with differential subsidy use. We show how 7-year synchrony appears on egg volume fluctuations after subsidy cessation suggesting that food subsidies could disrupt interspecific synchrony. Moreover, cross correlation increased after subsidy cessation and environmental buffering seems to act during synchronization period. We emphasize that subsidies dynamics and waste management provide novel insights on the emergence of synchrony in natural populations.


Subject(s)
Ecosystem , Population Density , Population Dynamics
4.
J Anim Ecol ; 91(9): 1781-1796, 2022 09.
Article in English | MEDLINE | ID: mdl-35633181

ABSTRACT

Among-individual and within-individual variation in expression of seasonal migration versus residence is widespread in nature and could substantially affect the dynamics of partially migratory metapopulations inhabiting seasonally and spatially structured environments. However, such variation has rarely been explicitly incorporated into metapopulation dynamic models for partially migratory systems. We, therefore, lack general frameworks that can identify how variable seasonal movements, and associated season- and location-specific vital rates, can control system persistence. We constructed a novel conceptual framework that captures full-annual-cycle dynamics and key dimensions of metapopulation structure for partially migratory species inhabiting seasonal environments. We conceptualize among-individual variation in seasonal migration as two variable vital rates: seasonal movement probability and associated movement survival probability. We conceptualize three levels of within-individual variation (i.e. plasticity), representing seasonal or annual variation in seasonal migration or lifelong fixed strategies. We formulate these concepts as a general matrix model, which is customizable for diverse life-histories and seasonal landscapes. To illustrate how variable seasonal migration can affect metapopulation growth rate, demographic structure and vital rate elasticities, we parameterize our general models for hypothetical short- and longer-lived species. Analyses illustrate that elasticities of seasonal movement probability and associated survival probability can sometimes equal or exceed those of vital rates typically understood to substantially influence metapopulation dynamics (i.e. seasonal survival probability or fecundity), that elasticities can vary non-linearly, and that metapopulation outcomes depend on the level of within-individual plasticity. We illustrate how our general framework can be applied to evaluate the consequences of variable and changing seasonal movement probability by parameterizing our models for a real partially migratory metapopulation of European shags Gulosus aristotelis assuming lifelong fixed strategies. Given observed conditions, metapopulation growth rate was most elastic to breeding season adult survival of the resident fraction in the dominant population. However, given doubled seasonal movement probability, variation in survival during movement would become the primary driver of metapopulation dynamics. Our general conceptual and matrix model frameworks, and illustrative analyses, thereby highlight complex ways in which structured variation in seasonal migration can influence dynamics of partially migratory metapopulations, and pave the way for diverse future theoretical and empirical advances.


Subject(s)
Birds , Movement , Animal Migration/physiology , Animals , Birds/physiology , Ecosystem , Population Dynamics , Probability , Seasons
5.
Proc Biol Sci ; 288(1951): 20210404, 2021 05 26.
Article in English | MEDLINE | ID: mdl-34004132

ABSTRACT

Quantifying temporal variation in sex-specific selection on key ecologically relevant traits, and quantifying how such variation arises through synergistic or opposing components of survival and reproductive selection, is central to understanding eco-evolutionary dynamics, but rarely achieved. Seasonal migration versus residence is one key trait that directly shapes spatio-seasonal population dynamics in spatially and temporally varying environments, but temporal dynamics of sex-specific selection have not been fully quantified. We fitted multi-event capture-recapture models to year-round ring resightings and breeding success data from partially migratory European shags (Phalacrocorax aristotelis) to quantify temporal variation in annual sex-specific selection on seasonal migration versus residence arising through adult survival, reproduction and the combination of both (i.e. annual fitness). We demonstrate episodes of strong and strongly fluctuating selection through annual fitness that were broadly synchronized across females and males. These overall fluctuations arose because strong reproductive selection against migration in several years contrasted with strong survival selection against residence in years with extreme climatic events. These results indicate how substantial phenotypic and genetic variation in migration versus residence could be maintained, and highlight that biologically important fluctuations in selection may not be detected unless both survival selection and reproductive selection are appropriately quantified and combined.


Subject(s)
Animal Migration , Reproduction , Animals , Birds , Female , Male , Population Dynamics , Seasons , Selection, Genetic
6.
J Anim Ecol ; 90(4): 796-808, 2021 04.
Article in English | MEDLINE | ID: mdl-33340099

ABSTRACT

Elucidating the full eco-evolutionary consequences of climate change requires quantifying the impact of extreme climatic events (ECEs) on selective landscapes of key phenotypic traits that mediate responses to changing environments. Episodes of strong ECE-induced selection could directly alter population composition, and potentially drive micro-evolution. However, to date, few studies have quantified ECE-induced selection on key traits, meaning that immediate and longer-term eco-evolutionary implications cannot yet be considered. One widely expressed trait that allows individuals to respond to changing seasonal environments, and directly shapes spatio-seasonal population dynamics, is seasonal migration versus residence. Many populations show considerable among-individual phenotypic variation, resulting in 'partial migration'. However, variation in the magnitude of direct survival selection on migration versus residence has not been rigorously quantified, and empirical evidence of whether seasonal ECEs induce, intensify, weaken or reverse such selection is lacking. We designed full annual cycle multi-state capture-recapture models that allow estimation of seasonal survival probabilities of migrants and residents from spatio-temporally heterogeneous individual resightings. We fitted these models to 9 years of geographically extensive year-round resighting data from partially migratory European shags Phalacrocorax aristotelis. We thereby quantified seasonal and annual survival selection on migration versus residence across benign and historically extreme non-breeding season (winter) conditions, and tested whether selection differed between females and males. We show that two of four observed ECEs, defined as severe winter storms causing overall low survival, were associated with very strong seasonal survival selection against residence. These episodes dwarfed the weak selection or neutrality evident otherwise, and hence caused selection through overall annual survival. The ECE that caused highest overall mortality and strongest selection also caused sex-biased mortality, but there was little overall evidence of sex-biased selection on migration versus residence. Our results imply that seasonal ECEs and associated mortality can substantially shape the landscape of survival selection on migration versus residence. Such ECE-induced phenotypic selection will directly alter migrant and resident frequencies, and thereby alter immediate spatio-seasonal population dynamics. Given underlying additive genetic variation, such ECEs could potentially cause micro-evolutionary changes in seasonal migration, and thereby cause complex eco-evolutionary population responses to changing seasonal environments.


Subject(s)
Birds , Climate Change , Animal Migration , Animals , Female , Phenotype , Population Dynamics , Seasons
8.
Proc Biol Sci ; 287(1931): 20200928, 2020 07 29.
Article in English | MEDLINE | ID: mdl-32693718

ABSTRACT

Within-individual and among-individual variation in expression of key environmentally sensitive traits, and associated variation in fitness components occurring within and between years, determine the extents of phenotypic plasticity and selection and shape population responses to changing environments. Reversible seasonal migration is one key trait that directly mediates spatial escape from seasonally deteriorating environments, causing spatio-seasonal population dynamics. Yet, within-individual and among-individual variation in seasonal migration versus residence, and dynamic associations with subsequent reproductive success, have not been fully quantified. We used novel capture-mark-recapture mixture models to assign individual European shags (Phalacrocorax aristotelis) to 'resident', 'early migrant', or 'late migrant' strategies in two consecutive years, using year-round local resightings. We demonstrate substantial among-individual variation in strategy within years, and directional within-individual change between years. Furthermore, subsequent reproductive success varied substantially among strategies, and relationships differed between years; residents and late migrants had highest success in the 2 years, respectively, matching the years in which these strategies were most frequently expressed. These results imply that migratory strategies can experience fluctuating reproductive selection, and that flexible expression of migration can be partially aligned with reproductive outcomes. Plastic seasonal migration could then potentially contribute to adaptive population responses to currently changing forms of environmental seasonality.


Subject(s)
Animal Migration/physiology , Birds/physiology , Animals , Female , Male , Phenotype , Population Dynamics , Reproduction/physiology , Seasons
9.
Ticks Tick Borne Dis ; 11(1): 101281, 2020 01.
Article in English | MEDLINE | ID: mdl-31473099

ABSTRACT

Ticks can negatively affect their host by direct effects as blood feeding causing anaemia or discomfort, or by pathogen transmission. Consequently, ticks can have an important role in the population dynamics of their hosts. However, specific studies on the demographic effects of tick infestation on seabirds are still scarce. Seabird ticks have also the potential to be responsible for the circulation of little known tick-borne agents, which could have implications for non-seabird species. Here, we report the results of investigations on potential associations between soft tick Ornithodoros maritimus load and reproductive parameters of storm petrels Hydrobates pelagicus breeding in a large colony in a cave of Espartar Island, in the Balearic archipelago. We also investigated by molecular analyses the potential viral and bacterial pathogens associated with O. maritimus ticks present at the colony. Lower nestling survival was recorded in the most infested area, deep in the cave, compared to the area near the entrance. The parasite load was negatively associated with the body condition of the nestlings. One pool of ticks tested positive for West Nile virus and 4 pools tested positive for a Borrelia species which was determined by targeted nested PCR to have a 99% sequence identity with B. turicatae, a relapsing fever Borrelia. Overall, these results show that further investigations are needed to better understand the ecology and epidemiology of the interactions between ticks, pathogens and Procellariiform species.


Subject(s)
Bird Diseases/epidemiology , Bird Diseases/parasitology , Birds , Coinfection/veterinary , Ornithodoros/physiology , Tick Infestations/veterinary , Animals , Body Composition , Borrelia/isolation & purification , Coinfection/microbiology , Coinfection/virology , Prevalence , Reproduction , Spain/epidemiology , Tick Infestations/epidemiology , Tick Infestations/parasitology , West Nile virus/isolation & purification
10.
Ecol Appl ; 25(8): 2228-39, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26910951

ABSTRACT

The control of overabundant vertebrates is often problematic. Much work has focused on population-level responses and overabundance due to anthropogenic subsidies. However, far less work has been directed at investigating responses following the removal of subsidies. We investigate the consequences of two consecutive perturbations, the closure of a landfill and an inadvertent poisoning event, on the trophic ecology (δ13C, δ15N, and δ34S), survival, and population size of an overabundant generalist seabird species, the Yellow-legged Gull (Larus michahellis). We expected that the landfill closure would cause a strong dietary shift and the inadvertent poisoning a decrease in gull population size. As a long-lived species, we also anticipated adult survival to be buffered against the decrease in food availability but not against the inadvertent poisoning event. Stable isotope analysis confirmed the dietary shift towards marine resources after the disappearance of the landfill. Although the survival model was inconclusive, it did suggest that the perturbations had a negative effect on survival, which was followed by a recovery back to average values. Food limitation likely triggered dispersal to other populations, while poisoning may have increased mortality; these two processes were likely responsible for the large fall in population size that occurred after the two consecutive perturbations. Life-history theory suggests that perturbations may encourage species to halt existing breeding investment in order to ensure future survival. However, under strong perturbation pulses the resilience threshold might be surpassed and changes in population density can arise. Consecutive perturbations may effectively manage overabundant species.


Subject(s)
Biodiversity , Human Activities , Animals , Ecosystem , Environmental Monitoring , Feeding Behavior , Food Chain , Humans , Models, Biological , Population Control
SELECTION OF CITATIONS
SEARCH DETAIL
...