Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
J Cardiopulm Rehabil Prev ; 32(3): 141-6, 2012.
Article in English | MEDLINE | ID: mdl-22487616

ABSTRACT

PURPOSE: While patients with heart failure who achieve a peak oxygen uptake (peak VO2) of 10 mL·kg(-1)·min(-1) or less are often considered for intensive surveillance or intervention, those achieving 14 mL·kg(-1)·min(-1) or more are generally considered to be at lower risk. Among patients in the "intermediate" range of 10.1 to 13.9 mL·kg(-1)·min(-1), optimally stratifying risk remains a challenge. METHODS: Patients with heart failure (N = 1167) referred for cardiopulmonary exercise testing were observed for 21 ± 13 months. Patients were classified into 3 groups of peak VO2 (≤10, 10.1-13.9, and ≥14 mL·kg(-1)·min(-1)). The ability of heart rate recovery at 1 minute (HRR1) and the minute ventilation/carbon dioxide output (VE/VCO2) slope to complement peak VO2 in predicting cardiovascular mortality were determined. RESULTS: Peak VO2, HRR1 (<16 beats per minute), and the VE/VCO2 slope (>34) were independent predictors of mortality (hazard ratio 1.6, 95% CI: 1.2-2.29, P = .006; hazard ratio 1.7, 95% CI: 1.1-2.5, P = .008; and hazard ratio 2.4, 95% CI: 1.6-3.4, P < .001, respectively). Compared with those achieving a peak VO2 ≥ 14 mL·kg(-1)·min(-1), patients within the intermediate range with either an abnormal VE/VCO2 slope or HRR1 had a nearly 2-fold higher risk of cardiac mortality. Those with both an abnormal HRR1 and VE/VCO2 slope had a higher mortality risk than those with a peak VO2 ≤ 10 mL·kg(-1)·min(-1). Survival was not different between those with a peak VO2 ≤ 10 mL·kg(-1)·min(-1) and those in the intermediate range with either an abnormal HRR1 or VE/VCO2 slope. CONCLUSIONS: HRR1 and the VE/VCO2 slope effectively stratify patients with peak VO2 within the intermediate range into distinct groups at high and low risk.


Subject(s)
Carbon Dioxide/analysis , Heart Failure/physiopathology , Heart Rate/physiology , Oxygen Consumption/physiology , Oxygen/metabolism , Recovery of Function , Respiration, Artificial/methods , Breath Tests , Exercise/physiology , Exercise Test , Exhalation/physiology , Female , Heart Failure/metabolism , Heart Failure/mortality , Humans , Male , Middle Aged , Predictive Value of Tests , Prognosis
2.
Am J Cardiol ; 104(4): 554-8, 2009 Aug 15.
Article in English | MEDLINE | ID: mdl-19660611

ABSTRACT

There is scarce information regarding the prognostic utility of peak exercise oxygen pulse (peak O(2) pulse), a surrogate for stroke volume, in patients with heart failure (HF). From May 1994 to November 2007, 998 patients with HF underwent cardiopulmonary exercise testing. The ability of peak oxygen uptake (VO(2)) and peak O(2) pulse to predict cardiac events was examined. Peak O(2) pulse was calculated by dividing peak VO(2) by heart rate at the time peak VO(2) was achieved and was expressed in both milliliters per beat and as a percentage achieved of the age-predicted value. There were 212 cardiac events (176 deaths, 26 transplantations, and 10 left ventricular assist device implantations) over a mean of 28 +/- 26 months of follow-up. Peak VO(2) and age-predicted peak O(2) pulse were demonstrated by univariate and multivariate Cox regression analyses to be independent predictors of mortality (p <0.001). The optimal cut points for peak VO(2) and age-predicted peak O(2) pulse (<14.3 and > or =14.3 [mL/kg(-1)/min(-1)] and <85% and > or =85%, respectively) were established by areas under the receiver-operating characteristic curves. Patients exhibiting abnormalities for both responses had 4.8-fold (95% confidence interval 2.7 to 8.5) and 6.7-fold (95% confidence interval 4.1 to 11.1) higher risks for mortality and cardiac events, respectively, than those whose responses were normal. Age-predicted peak O(2) pulse also predicted mortality in patients in the intermediate range of peak VO(2) (10 to 14 (mL/kg(-1)/min(-1))). The 3-year mortality rate for patients in this range who had age-predicted peak O(2) pulse values <85% was even slightly higher than those with peak VO(2) <10.1 (mL/kg(-1)/min(-1)). In conclusion, age-predicted peak O(2) pulse was a strong and independent predictor of cardiac mortality and complemented peak VO(2) in predicting risk in patients with HF.


Subject(s)
Heart Failure/diagnosis , Heart Failure/physiopathology , Oxygen Consumption/physiology , Adult , Age Factors , Aged , Cohort Studies , Exercise Test , Female , Heart Failure/complications , Heart Rate/physiology , Humans , Male , Middle Aged , Predictive Value of Tests , Prognosis , Retrospective Studies , Stroke Volume/physiology , Survival Analysis
SELECTION OF CITATIONS
SEARCH DETAIL