Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
An Acad Bras Cienc ; 93(suppl 1): e20201096, 2021.
Article in English | MEDLINE | ID: mdl-34076206

ABSTRACT

BINGO (BAO from Integrated Neutral Gas Observations) is a unique radio telescope designed to map the intensity of neutral hydrogen distribution at cosmological distances, making the first detection of Baryon Acoustic Oscillations (BAO) in the frequency band 980 MHz - 1260 MHz, corresponding to a redshift range 0.127 < z < 0.449. BAO is one of the most powerful probes of cosmological parameters and BINGO was designed to detect the BAO signal to a level that makes it possible to put new constraints on the equation of state of dark energy. The telescope will be built in Paraíba, Brazil and consists of two \thicksim 40m mirrors, a feedhorn array of 50 horns, and no moving parts, working as a drift-scan instrument. It will cover a 15 ^{\circ} ∘ declination strip centered at \sim \delta ∼ δ =-15 ^{\circ} ∘ , mapping \sim ∼ 5400 square degrees in the sky. The BINGO consortium is led by University of São Paulo with co-leadership at National Institute for Space Research and Campina Grande Federal University (Brazil). Telescope subsystems have already been fabricated and tested, and the dish and structure fabrication are expected to start in late 2020, as well as the road and terrain preparation.

2.
Endocrinology ; 161(5)2020 05 01.
Article in English | MEDLINE | ID: mdl-32188976

ABSTRACT

Differentiation of the hormone-producing cells of the pituitary represents an informative model of cell fate determination. The generation and maintenance of 2 pituitary lineages, the growth hormone (GH)- producing somatotropes and the prolactin (PRL)- producing lactotropes, are dependent on the pituitary-specific transcription factor, POU1F1. While POU1F1 is expressed in both cell types, and plays a role in activation of both the Gh and Prl genes, expression of Gh and Prl is restricted to somatotropes and lactotropes, respectively. These observations imply the existence of additional factors that contribute to the somatotrope and lactotrope identities and their hormone expressions. Prior transcriptome analysis of primary somatotropes and lactotropes isolated from the mouse pituitary identified enrichment of a transcription factor, Nr4a2, in the lactotropes. Nr4a2 was shown in a cell culture model to bind the Prl promoter at a position adjacent to Pou1f1 and to synergize with Pou1f1 in driving Prl transcription. Here we demonstrate in vivo the role of Nr4a2 as an enhancer of Prl expression by conditional gene inactivation of the Nr4a2 gene in mouse lactotropes. We demonstrate that nuclear orphan receptor transcription factor (NR4A2) binding at the Prl promoter is dependent on actions of POU1F1; while POU1F1 is essential to loading polymerase (Pol) II on the Prl promoter, Nr4a2 plays a role in enhancing Pol II release into the Prl gene body. These studies establish an in vivo role of Nr4a2 in enhancing Prl expression in mouse lactotropes, explore its mechanism of action, and establish a system for further study of the lactotrope lineage in the pituitary.


Subject(s)
Gene Expression Regulation , Lactotrophs/metabolism , Nuclear Receptor Subfamily 4, Group A, Member 2/genetics , Pituitary Gland/metabolism , Prolactin/genetics , Animals , Cells, Cultured , Female , Lactotrophs/cytology , Mice, Inbred Strains , Mice, Knockout , Mice, Transgenic , Microscopy, Fluorescence , Nuclear Receptor Subfamily 4, Group A, Member 2/metabolism , Pituitary Gland/cytology , Prolactin/metabolism , Promoter Regions, Genetic/genetics , Protein Binding , Transcription Factor Pit-1/genetics , Transcription Factor Pit-1/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL