Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 395
Filter
1.
Int J Biol Macromol ; 279(Pt 2): 135234, 2024 Aug 30.
Article in English | MEDLINE | ID: mdl-39218189

ABSTRACT

The mechanisms by which low light accelerates starch macromolecules degradation by auxin and gibberellin (GA) in geophytes during sprouting remain largely unknown. This study investigated these mechanisms in saffron, grown under low light (50 µmol m-2 s-1) and optimal light (200 µmol m-2 s-1) during the sprouting phase. Low light reduced starch concentration in corms by 34.0 % and increased significantly sucrose levels in corms, leaves, and leaf sheaths by 19.2 %, 9.8 %, and 134.5 %, respectively. This was associated with a 33.3 % increase in GA3 level and enhanced auxin signaling. Leaves synthesized IAA under low light, which was transported to the corms to promote GA synthesis, facilitating starch degradation through a 228.7 % increase in amylase activity. Exogenous applications of GA and IAA, as well as the use of their synthesis or transport inhibitors, confirmed the synergistic role of these phytohormones in starch metabolism. The unigenes associated with GA biosynthesis and auxin signaling were upregulated under low light, highlighting the IAA-GA module role in starch degradation. Moreover, increased respiration rate and invertase activity, crucial for ATP biosynthesis and the tricarboxylic acid cycle, were consistent with the upregulation of related unigenes, suggesting that auxin signaling accelerates starch degradation by promoting energy metabolism. Upregulated of auxin signaling (CsSAUR32) and starch metabolism (CsSnRK1) genes under low light suggests that auxin directly regulate starch degradation in saffron corms. This study elucidates that low light modulates auxin and GA interactions to accelerate starch degradation in saffron corms during sprouting, offering insights for optimizing agricultural practices under suboptimal light conditions.

2.
Dev Cell ; 59(16): 2035-2052.e10, 2024 Aug 19.
Article in English | MEDLINE | ID: mdl-39094564

ABSTRACT

Protein biogenesis within the endoplasmic reticulum (ER) is crucial for organismal function. Errors during protein folding necessitate the removal of faulty products. ER-associated protein degradation and ER-phagy target misfolded proteins for proteasomal and lysosomal degradation. The mechanisms initiating ER-phagy in response to ER proteostasis defects are not well understood. By studying mouse primary cells and patient samples as a model of ER storage disorders (ERSDs), we show that accumulation of faulty products within the ER triggers a response involving SESTRIN2, a nutrient sensor controlling mTORC1 signaling. SESTRIN2 induction by XBP1 inhibits mTORC1's phosphorylation of TFEB/TFE3, allowing these transcription factors to enter the nucleus and upregulate the ER-phagy receptor FAM134B along with lysosomal genes. This response promotes ER-phagy of misfolded proteins via FAM134B-Calnexin complex. Pharmacological induction of FAM134B improves clearance of misfolded proteins in ERSDs. Our study identifies the interplay between nutrient signaling and ER quality control, suggesting therapeutic strategies for ERSDs.


Subject(s)
Endoplasmic Reticulum , Mechanistic Target of Rapamycin Complex 1 , Protein Folding , X-Box Binding Protein 1 , Animals , Endoplasmic Reticulum/metabolism , Humans , Mice , Mechanistic Target of Rapamycin Complex 1/metabolism , X-Box Binding Protein 1/metabolism , X-Box Binding Protein 1/genetics , Signal Transduction , Membrane Proteins/metabolism , Membrane Proteins/genetics , Intracellular Signaling Peptides and Proteins/metabolism , Intracellular Signaling Peptides and Proteins/genetics , Nuclear Proteins/metabolism , Nuclear Proteins/genetics , Lysosomes/metabolism , Endoplasmic Reticulum Stress , Sestrins/metabolism , Sestrins/genetics , Phosphorylation , Proteostasis , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors
3.
Life Sci ; 354: 122984, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-39151883

ABSTRACT

AIMS: Advanced glycation end-products (AGEs) are implicated in the age-related decline of renal function, exacerbated by conditions, such as hyperglycemia and oxidative stress. The accumulation of AGEs in the kidneys contributes to the progressive decline in renal function observed with aging. However, the precise role and mechanisms of AGEs in the age-related decline of renal function remain unclear. In this study, we investigated the impact and potential mechanisms of AGEs on aging kidneys in naturally aging mice. MATERIALS AND METHODS: Male C57BL/6 mice were divided into three groups: 6-, 57-, and 107-week-old. First, the 6- and 107-week-old mice were euthanized. The remaining mice were divided into young (6 weeks) and old (57 weeks) groups. The 57-week-old mice were orally administered aminoguanidine (100 mg/kg/day), an AGEs inhibitor, or vehicle for 13 weeks, resulting in a final age of 70 weeks. The serum and kidney tissues were collected for biochemical measurement, histological examination, immunohistochemistry staining, and immunoblotting analysis. KEY FINDINGS: Our findings revealed a notable accumulation of AGEs in both serum and kidney tissue specimens and renal dysfunction in naturally aging mice. Aminoguanidine not only reversed AGEs accumulation but also ameliorated renal dysfunction. Additionally, aminoguanidine attenuated the upregulation of fibrosis markers (phosphorylated p38/α-SMA and C/EBP homologous protein, CHOP), senescence markers (p53 and p21), and oxidative stress marker (4-HNE) in the aging kidneys. SIGNIFICANCE: These findings underscore the critical role of AGEs in age-related renal dysfunction and highlight the therapeutic potential of aminoguanidine in mitigating fibrosis and senescence, offering prospective avenues for combating age-associated renal ailments.


Subject(s)
Aging , Glycation End Products, Advanced , Guanidines , Kidney , Mice, Inbred C57BL , Oxidative Stress , Animals , Glycation End Products, Advanced/metabolism , Male , Aging/metabolism , Mice , Kidney/metabolism , Kidney/pathology , Oxidative Stress/drug effects , Guanidines/pharmacology , Kidney Diseases/metabolism , Kidney Diseases/pathology , Fibrosis/metabolism
4.
Front Microbiol ; 15: 1279536, 2024.
Article in English | MEDLINE | ID: mdl-39132140

ABSTRACT

Introduction: Cistanche salsa (C.A.Mey.) G. Beck is a perennial holoparasitic herb recognized for its medicinal properties, particularly in kidney-tonifying and laxative treatments. Despite its therapeutic potential, little is known about the endophyte communities inhabiting C. salsa and its host plants, and how these microorganisms may impact the production and accumulation of metabolites in C. salsa. Methods: We conducted a dual analysis focusing on metabolomics of wild C. salsa and microbiome characterization of both C. salsa and its host plant, Kalidium foliatum (Pall.) Moq. The metabolomics analysis revealed variations in metabolite composition across different parts of C. salsa. Additionally, the microbiome analysis involved studying endophytic bacteria and fungi, comparing their community structures between parasitic C. salsa and its host plant. Results: Significant variations in metabolite composition were observed through metabolomic profiling, which identified 93 secondary metabolites and 398 primary metabolites across various parts of C. salsa. Emphasis was placed on differences in metabolite composition within the flowers. Microbiome analysis revealed differential community compositions of endophytic bacteria between the parasitic and host plants, whereas differences in endophytic fungi were less pronounced. Certain endophytes, such as Bacteroidota, Proteobacteria, Ascomycota, and Basidiomycota, were associated with the production of specific secondary metabolites in C. salsa, including the plant-specific compound salsaside. Discussion: Our findings highlight the intricate relationship between C. salsa and its endophytic microbiota, suggesting a potential role of these microorganisms in modulating the biosynthesis of bioactive compounds. The differential preferences of endophytic bacteria and fungi across various microenvironments within the parasitic plant system underscore the complexity of these interactions. Further elucidation of these dynamics could enhance our understanding of C. salsa's medicinal properties and its ecological adaptations as a holoparasitic herb.

5.
J Vis Exp ; (205)2024 Mar 22.
Article in English | MEDLINE | ID: mdl-38587395

ABSTRACT

This paper presents a novel and efficient method for certifying primary organs involved in secondary metabolite synthesis. As the most important secondary metabolite in Parispolyphylla var. yunnanensis (Franch.) Hand. -Mzt. (PPY), Paris saponin (PS) has a variety of pharmacological activities and PPY is in increasing demand. This study established leaf, rhizome, and stem-vascular-bundle 13C6-Glucose feeding and non-feeding four treatments to precisely certify the primary organs involved in Paris saponins VII (PS VII) synthesis. By combining liquid chromatography-mass spectrometry (LC-MS), the 13C/12C ratios of leaf, rhizome, stem, and root in different treatments were quickly and accurately calculated, and four types of PS isotopic ion peak(M-) ratios were found: (M+1) -/M-, (M+2) -/M-, (M+3) -/M- and (M+4) -/M-. The results showed that the ratio of 13C/12C in the rhizomes of the stem-vascular-bundle and rhizome feeding treatments was significantly higher than that in the non-feeding treatment. Compared to the non-feeding treatment, the ratio of PS VII molecules (M+2) -/M- in the leaves increased significantly under leaf and stem-vascular-bundle feeding treatments. Simultaneously, compared to the non-feeding treatment, the ratio of PS VII molecules (M+2) -/M- in the leaves under rhizome treatment showed no significant difference. Furthermore, the ratio of PS VII molecules (M+2) -/M- in the stem, root, and rhizome showed no differences among the four treatments. Compared to the non-feeding treatment, the ratio of the Paris saponin II (PS II) molecule (M+2) -/M- in leaves under leaf feeding treatment showed no significant difference, and the (M+3) -/M- ratio of PS II molecules in leaves under leaf feeding treatment were lower. The data confirmed that the primary organ for the synthesizing of PS VII is the leaves. It lays the foundation for future identification of the primary organs and pathways involved in the synthesis of secondary metabolites in medicinal plants.


Subject(s)
Liquid Chromatography-Mass Spectrometry , Tandem Mass Spectrometry , Tandem Mass Spectrometry/methods , Chromatography, Liquid , Plant Leaves
6.
Sci Rep ; 14(1): 9783, 2024 04 29.
Article in English | MEDLINE | ID: mdl-38684694

ABSTRACT

The subfamily Polygonoideae encompasses a diverse array of medicinal and horticultural plants that hold significant economic value. However, due to the lack of a robust taxonomy based on phylogenetic relationships, the classification within this family is perplexing, and there is also a scarcity of reports on the chloroplast genomes of many plants falling under this classification. In this study, we conducted a comprehensive analysis by sequencing and characterizing the complete chloroplast genomes of six Polygonoideae plants, namely Pteroxygonum denticulatum, Pleuropterus multiflorus, Pleuropterus ciliinervis, Fallopia aubertii, Fallopia dentatoalata, and Fallopia convolvulus. Our findings revealed that these six plants possess chloroplast genomes with a typical quadripartite structure, averaging 162,931 bp in length. Comparative chloroplast analysis, codon usage analysis, and repetitive sequence analysis demonstrated a high level of conservation within the chloroplast genomes of these plants. Furthermore, phylogenetic analysis unveiled a distinct clade occupied by P. denticulatum, while P. ciliinrvis displayed a closer relationship to the three plants belonging to the Fallopia genus. Selective pressure analysis based on maximum likelihood trees showed that a total of 14 protein-coding genes exhibited positive selection, with psbB and ycf1 having the highest number of positive amino acid sites. Additionally, we identified four molecular markers, namely petN-psbM, psal-ycf4, ycf3-trnS-GGA, and trnL-UAG-ccsA, which exhibit high variability and can be utilized for the identification of these six plants.


Subject(s)
Genome, Chloroplast , Phylogeny , Genome, Chloroplast/genetics , Selection, Genetic , Genetic Markers , Asteraceae/genetics , Asteraceae/classification , Evolution, Molecular , Codon Usage
7.
Plants (Basel) ; 13(5)2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38475505

ABSTRACT

Seed storage underpins global agriculture and the seed trade and revealing the mechanisms of seed aging is essential for enhancing seed longevity management. Safflower is a multipurpose oil crop, rich in unsaturated fatty acids that are at high risk of peroxidation as a contributory factor to seed aging. However, the molecular mechanisms responsible for safflower seed viability loss are not yet elucidated. We used controlled deterioration (CDT) conditions of 60% relative humidity and 50 °C to reduce germination in freshly harvested safflower seeds and analyzed aged seeds using biochemical and molecular techniques. While seed malondialdehyde (MDA) and fatty acid content increased significantly during CDT, catalase activity and soluble sugar content decreased. KEGG analysis of gene function and qPCR validation indicated that aging severely impaired several key functional and biosynthetic pathways including glycolysis, fatty acid metabolism, antioxidant activity, and DNA replication and repair. Furthermore, exogenous sucrose and diethyl aminoethyl hexanoate (DA-6) treatment partially promoted germination in aged seeds, further demonstrating the vital role of impaired sugar and fatty acid metabolism during the aging and recovery processes. We concluded that energy metabolism and genetic integrity are impaired during aging, which contributes to the loss of seed vigor. Such energy metabolic pathways as glycolysis, fatty acid degradation, and the tricarboxylic acid cycle (TCA) are impaired, especially fatty acids produced by the hydrolysis of triacylglycerols during aging, as they are not efficiently converted to sucrose via the glyoxylate cycle to provide energy supply for safflower seed germination and seedling growth. At the same time, the reduced capacity for nucleotide synthesis capacity and the deterioration of DNA repair ability further aggravate the damage to DNA, reducing seed vitality.

8.
J Pharm Biomed Anal ; 243: 116115, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38513497

ABSTRACT

Crocus sativus L. (C. sativus) has its stigma as the main valuable part used. With extremely low production and high prices, stigma is considered a scarce resource. As a result, its petals, considered as by-products, are often discarded, leading to significant waste. We developed a UPLC-Q-Orbitrap HRMS method for qualitative analysis of stigmas and petals and a UHPLC-QQQ-MS/MS method for simultaneous quantification of 9 characteristic active compounds for the first time, and compared their biological activity in vitro. The results indicated that a total of 63 compounds were identified in the petals and stigmas. The content of flavonoids in the petals was significantly superior to that in the stigma, and the content of quercetin in the petals was 50 times higher than that in the stigma. The results of the in vitro evaluation of biological activity indicated that both the petals (•OH: IC50=39.70 mg/mL; DPPH: IC50=28.37 mg/mL; ABTS: IC50=0.9868 mg/mL)and stigma (•OH: IC50=34.41 mg/mL; DPPH: IC50=38.99 mg/mL; ABTS: IC50=3.194 mg/mL)demonstrated comparable antioxidant activities. However, the tyrosinase inhibitory activity in petals (IC50=21.17 mg/mL) was weaker than that in stigma(IC50=1.488 mg/mL). This study provides a fast, reliable, and efficient analytical method that can be used for the quality assessment of petals as a natural resource and its related products in the food and pharmaceutical industries.


Subject(s)
Antioxidants , Benzothiazoles , Sulfonic Acids , Tandem Mass Spectrometry , Antioxidants/pharmacology , Flavonoids/pharmacology , Quercetin , Plant Extracts/pharmacology
9.
Front Bioeng Biotechnol ; 12: 1310289, 2024.
Article in English | MEDLINE | ID: mdl-38419730

ABSTRACT

Human organotypic bone models are an emerging technology that replicate bone physiology and mechanobiology for comprehensive in vitro experimentation over prolonged periods of time. Recently, we introduced a mineralized bone model based on 3D bioprinted cell-laden alginate-gelatin-graphene oxide hydrogels cultured under dynamic loading using commercially available human mesenchymal stem cells. In the present study, we created cell-laden scaffolds from primary human osteoblasts isolated from surgical waste material and investigated the effects of a previously reported optimal cell printing density (5 × 106 cells/mL bioink) vs. a higher physiological cell density (10 × 106 cells/mL bioink). We studied mineral formation, scaffold stiffness, and cell morphology over a 10-week period to determine culture conditions for primary human bone cells in this microenvironment. For analysis, the human bone-derived cell-laden scaffolds underwent multiscale assessment at specific timepoints. High cell viability was observed in both groups after bioprinting (>90%) and after 2 weeks of daily mechanical loading (>85%). Bioprinting at a higher cell density resulted in faster mineral formation rates, higher mineral densities and remarkably a 10-fold increase in stiffness compared to a modest 2-fold increase in the lower printing density group. In addition, physiological cell bioprinting densities positively impacted cell spreading and formation of dendritic interconnections. We conclude that our methodology of processing patient-specific human bone cells, subsequent biofabrication and dynamic culturing reliably affords mineralized cell-laden scaffolds. In the future, in vitro systems based on patient-derived cells could be applied to study the individual phenotype of bone disorders such as osteogenesis imperfecta and aid clinical decision making.

10.
Sci Total Environ ; 919: 170801, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38340858

ABSTRACT

Addressing soil salinization and implementing sustainable practices for cultivating cash crops on saline-alkali land is a prominent global challenge. Cynomorium songaricum is an important salt-alkali tolerant medicinal plant capable of adapting to saline-alkali environments. In this study, two typical ecotypes of C. songaricum from the desert-steppe (DS) and saline-alkali land (SAL) habitats were selected. Through the integration of multi-omics with machine learning, the rhizosphere microbial communities, genetic maps, and metabolic profiles of two ecotypes were created and the crucial factors for the adaptation of C. songaricum to saline-alkali stress were identified, including 7 keystone OTUs (i.e. Novosphingobium sp., Sinorhizobium meliloti, and Glycomyces sp.), 5 core genes (cell wall-related genes), and 10 most important metabolites (i.e. cucurbitacin D and 3-Hydroxybutyrate) were identified. Our results indicated that under saline-alkali environments, the microbial competition might become more intense, and the microbial community network had the simple but stable structure, accompanied by the changes in the gene expression related to cell wall for adaptation. However, this regulation led to the reduction in active ingredients, such as the accumulation of flavonoids and organic acid, and enhanced the synthesis of bitter substances (cucurbitacin D), resulting in the decrease in the quality of C. songaricum. Therefore, compared to the SAL ecotype, the DS was more suitable for the subsequent development of medicinal and edible products of C. songaricum. Furthermore, to explore the reasons for this quality variation, we constructed a comprehensive microbial-genetic-metabolic regulatory network, revealing that the metabolism of C. songaricum was primarily influenced by genetic factors. These findings not only offer new insights for future research into plant salt-alkali tolerance strategies but also provide a crucial understanding for cultivating high-quality medicinal plants.


Subject(s)
Cynomorium , Microbiota , Triterpenes , Transcriptome , Cynomorium/chemistry , Cynomorium/physiology , Alkalies , Metabolome
11.
J Hazard Mater ; 468: 133851, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38394901

ABSTRACT

As the most famous and widely used traditional Chinese medicine (TCM), Ligusticum sinense cv. Chuanxiong (L. Chuaniong) has been affected by cadmium (Cd) exceeding with high ability of Cd accumulation. There is relatively little research on Cd absorption and storage process in L. Chuanxiong, which is an important reason for the poor remediation efficiency. Hence, this study takes L. Chuanxiong as the point of penetration to explore how L. Chuanxiong affects rhizobacteria through root exudates to alter soil Cd intake, as well as to explore the migration and storage of Cd in its body with 0.10 (T0), 5.00 (T5), 10.00 (T10) mg/kg Cd contaminations. The results showed that the relative abundance of amino acids and phospholipids secreted from L. Chuanxiong root noticeably increased with increasing Cd levels, which directly activated soil Cd or extremely significantly (P < 0.01) recruited bacteria such as Bacillus, Arthrobacter to indirectly increase Cd availability. Under the interaction of root exudates and rhizobacteria, Cd bioavailability increased by 80.00% in rhizosphere soil and Cd accumulation in L. Chuanxiong increased 5.44-6.65 mg/kg. Cd subcellular distribution analysis demonstrated that Cd was mainly stored in the root (10-fold more than in the leaf), whose Cd content was cytoderm>cytoplasm>organelle in tissues. The sequential extraction results found that non-soluble phosphate and protein-chelated Cd dominated (85.00-90.00%) in the cell, while Cd cheated with alcohol soluble protein, amino acid salts, water-soluble organic acid in cell was minimal (5.50%). The phenomenon indicated that L. Chuanxiong fixed Cd in root (the medical part) with low translocation ability. This study can provide theoretical support for the high-quality production of L. Chuanxiong and other root medical plant in heavy metal influenced sites.


Subject(s)
Ligusticum , Metals, Heavy , Soil Pollutants , Cadmium/metabolism , Ligusticum/chemistry , Ligusticum/metabolism , Rhizosphere , Metals, Heavy/analysis , Amino Acids , Soil/chemistry , Soil Pollutants/metabolism , Plant Roots/metabolism
12.
Int J Rheum Dis ; 27(1): e14985, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38037272

ABSTRACT

OBJECTIVES: To investigate the crucial roles of physical function (PF) and physical activity (PA) in axial spondyloarthritis (axSpA) patients, as well as their correlation with disease activity (DA), and to explore the influence of general characteristics among them. METHODS: We enrolled axSpA patients from Xijing Hospital, spanning March 2022 to August 2022. Spearman rank correlation coefficients were used to assess correlations between PA (measured by the Global Physical Activity Questionnaire [GPAQ]), PF (measured by the Assessment of Spondyloarthritis international Society Health Index [ASAS-HI], the Short Form 36-Item Health Survey [SF-36], and the Bath Ankylosing Spondylitis Functional Index [BASFI]), DA, and their influencing factors. A Mann-Whitney U-test and Kruskal-Wallis H-test were used to compare variables between different patients grouped by sex, human leukocyte antigen B27 (HLA-B27), hip involvement, and intensity of PA and DA. RESULTS: Three hundred fifty-five axSpA patients were included. We observed a moderate to strong correlation between DA and PF in axSpA patients. PA was weakly correlated with DA or PF. DA varied significantly at different PA levels, and patients with low PA levels had poorer PF. Active patients had worse PF, less transport-related PA, and a higher rate of hip involvement with a worse Harris Hip Score (HHS). CONCLUSIONS: We identified a close relationship between DA, PF, and PA in axSpA patients. Further, gender, HLA-B27, and hip involvement affected the clinical manifestation of axSpA patients. These findings demonstrate that clinical remission of axSpA patients requires a comprehensive assessment rather than a single remission of DA.


Subject(s)
Spondylarthritis , Spondylitis, Ankylosing , Humans , HLA-B27 Antigen , Spondylarthritis/diagnosis , Spondylarthritis/therapy , Severity of Illness Index , Patients
13.
Sci Rep ; 13(1): 21733, 2023 12 08.
Article in English | MEDLINE | ID: mdl-38066026

ABSTRACT

Based on geographical distribution, cultivated Chinese Angelica dahurica has been divided into Angelica dahurica cv. 'Hangbaizhi' (HBZ) and Angelica dahurica cv. 'Qibaizhi' (QBZ). Long-term geographical isolation has led to significant quality differences between them. The secretory structure in medicinal plants, as a place for accumulating effective constituents and information transmission to the environment, links the environment with the quality of medicinal materials. However, the secretory tract differences between HBZ and QBZ has not been revealed. This study aimed to explore the relationship between the secretory tract and the quality of two kinds of A. dahurica. Root samples were collected at seven development phases. High-Performance Liquid Chromatography (HPLC) and Desorption Electrospray Ionization Mass Spectrometry Imaging (DESI-MSI) were used for the content determination and spatial location of coumarins. Paraffin section was used to observe and localize the root secretory tract. Origin, CaseViewer, and HDI software were used for data analysis and image processing. The results showed that compared to QBZ, HBZ, with better quality, has a larger area of root secretory tracts. Hence, the root secretory tract can be included in the quality evaluation indicators of A. dahurica. Additionally, DESI-MSI technology was used for the first time to elucidate the temporal and spatial distribution of coumarin components in A. dahurica root tissues. This study provides a theoretical basis for the quality evaluation and breeding of improved varieties of A. dahurica and references the DESI-MSI technology used to analyze the metabolic differences of various compounds, including coumarin and volatile oil, in different tissue parts of A. dahurica.


Subject(s)
Angelica , Oils, Volatile , Plants, Medicinal , Angelica/chemistry , Plant Breeding , Coumarins/chemistry , Chromatography, High Pressure Liquid/methods
14.
Hortic Res ; 10(11): uhad197, 2023 Nov.
Article in English | MEDLINE | ID: mdl-38023481

ABSTRACT

Safflower (Carthamus tinctorius) is widely cultivated around the world for its seeds and flowers. The presence of linoleic acid (LA) in its seeds and hydroxysafflor yellow A (HSYA) in its flowers are the crucial traits that enable safflower to be used for industrial and medicinal purposes. Understanding the genetic control of these traits is essential for optimizing the quality of safflower and its breeding. To further this research, we present a chromosome-scale assembly of the genome of the safflower variety 'Chuanhonghua 1', which was achieved using an integrated strategy combining Illumina, Oxford Nanopore, and Hi-C sequencing. We obtained a 1.17-Gb assembly with a contig N50 of 1.08 Mb, and all assembled sequences were assigned to 12 pseudochromosomes. Safflower's evolution involved the core eudicot γ-triplication event and a whole-genome duplication event, which led to large-scale genomic rearrangements. Extensive genomic shuffling has occurred since the divergence of the ancestor of dicotyledons. We conducted metabolite and transcriptome profiles with time- and part-dependent changes and screened candidate genes that significantly contribute to seed lipid biosynthesis. We also analyzed key gene families that participate in LA and HSYA biosynthesis. Additionally, we re-sequenced 220 safflower lines and carried out a genome-wide association study using high-quality SNP data for eight agronomic traits. We identified SNPs related to important traits in safflower. Besides, the candidate gene HH_034464 (CtCGT1) was shown to be involved in the biosynthesis of HSYA. Overall, we provide a high-quality reference genome and elucidate the genetic basis of LA and HSYA biosynthesis in safflower. This vast amount of data will benefit further research for functional gene mining and breeding in safflower.

15.
Molecules ; 28(21)2023 Oct 24.
Article in English | MEDLINE | ID: mdl-37959658

ABSTRACT

Liver fibrosis refers to a complex inflammatory response caused by multiple factors, which is a known cause of liver cirrhosis and even liver cancer. As a valuable medicine food homology herb, saffron has been widely used in the world. Saffron is commonly used in liver-related diseases and has rich therapeutic and health benefits. The therapeutic effect is satisfactory, but its mechanism is still unclear. In order to clarify these problems, we planned to determine the pharmacological effects and mechanisms of saffron extract in preventing and treating liver fibrosis through network pharmacology analysis combined with in vivo validation experiments. Through UPLC-Q-Exactive-MS analysis, a total of fifty-six nutrients and active ingredients were identified, and nine of them were screened to predict their therapeutic targets for liver fibrosis. Then, network pharmacology analysis was applied to identify 321 targets for saffron extract to alleviate liver fibrosis. Functional and pathway enrichment analysis showed that the putative targets of saffron for the treatment of hepatic fibrosis are mainly involved in the calcium signaling pathway, the HIF-1 signaling pathway, endocrine resistance, the PI3K/Akt signaling pathway, lipid and atherosclerosis, and the cAMP signaling pathway. Based on the CCl4-induced liver fibrosis mice model, we experimentally confirmed that saffron extract can alleviate the severity and pathological changes during the progression of liver fibrosis. RT-PCR and Western blotting analysis confirmed that saffron treatment can prevent the CCl4-induced upregulation of HIF-1α, VEGFA, AKT, and PI3K, suggesting that saffron may regulate AKT/HIF-1α/VEGF and alleviate liver fibrosis.


Subject(s)
Crocus , Drugs, Chinese Herbal , Mice , Animals , Proto-Oncogene Proteins c-akt/metabolism , Vascular Endothelial Growth Factor A/metabolism , Crocus/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Signal Transduction , Liver Cirrhosis/chemically induced , Liver Cirrhosis/drug therapy , Coloring Agents/pharmacology , Drugs, Chinese Herbal/pharmacology
16.
J Agric Food Chem ; 71(43): 16221-16232, 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37870279

ABSTRACT

Safflower (Carthamus tinctorius L.) is a multipurpose economic crop that is distributed worldwide. Flavonoid glycosides are the main bioactive components in safflower, but only a few UDP-glycosyltransferases (UGT) have been identified. Three differentially expressed UGT genes related with the accumulation of 9 flavonoid O-glycosides were screened from metabolomics and transcriptome analysis. Safflower corolla protoplasts were used to confirm the glycosylation ability of UGT candidates in vivo for the first time. The astragalin content was significantly increased only when CtUGT3 was overexpressed. CtUGT3 also showed flavonoid 3-OH and 7-OH glycosylation activities in vitro. Molecular modeling and site-directed mutagenesis revealed that G15, T136, S276, and E384 were critical catalytic residues for the glycosylation ability of CtUGT3. These results demonstrate that CtUGT3 has a flavonoid 3-OH glycosylation function and is involved in the biosynthesis of astragalin in safflower. This study provides a reference for flavonoid biosynthesis genes research in nonmodel plants.


Subject(s)
Carthamus tinctorius , Carthamus tinctorius/genetics , Gene Expression Profiling , Flavonoids/chemistry , Glycosides/chemistry , Glycosyltransferases/genetics
17.
Eur J Pharm Sci ; 191: 106598, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-37783378

ABSTRACT

Safe and efficacious antiviral therapeutics are in urgent need for the treatment of coronavirus disease 2019. Simnotrelvir is a selective 3C-like protease inhibitor that can effectively inhibit severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). We evaluated the safety, tolerability, and pharmacokinetics of dose escalations of simnotrelvir alone or with ritonavir (simnotrelvir or simnotrelvir/ritonavir) in healthy subjects, as well as the food effect (ClinicalTrials.gov Identifier: NCT05339646). The overall incidence of adverse events (AEs) was 22.2% (17/72) and 6.3% (1/16) in intervention and placebo groups, respectively. The simnotrelvir apparent clearance was 135-369 L/h with simnotrelvir alone, and decreased significantly to 19.5-29.8 L/h with simnotrelvir/ritonavir. The simnotrelvir exposure increased in an approximately dose-proportional manner between 250 and 750 mg when co-administered with ritonavir. After consecutive twice daily dosing of simnotrelvir/ritonavir, simnotrelvir had a low accumulation index ranging from 1.39 to 1.51. The area under the curve of simnotrelvir increased 44.0 % and 47.3 % respectively, after high fat and normal diet compared with fasted status. In conclusion, simnotrelvir has adequate safety and tolerability. Its pharmacokinetics indicated a trough concentration above the level required for 90 % inhibition of SARS-CoV-2 in vitro at 750 mg/100 mg simnotrelvir/ritonavir twice daily under fasted condition, supporting further development using this dosage as the clinically recommended dose regimen.


Subject(s)
COVID-19 , Protease Inhibitors , Adult , Humans , Antiviral Agents/adverse effects , Enzyme Inhibitors , Healthy Volunteers , Protease Inhibitors/adverse effects , Ritonavir/therapeutic use , SARS-CoV-2
18.
J Sep Sci ; 46(22): e2300196, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37806751

ABSTRACT

After medicinal market research, it was found that the harvest time of Ligustri Lucidi Fructus (LLF) was chaotic in practice. In order to determine the optimal harvest period of LLF to ensure its pharmacological activity, metabolomics analysis of LLF at different harvest times based on ultra-high-performance liquid chromatography-triple quadrupole-(linear ion trap)-tandem mass spectrometry was established. In this study, 166 differential metabolites (DMs) in 448 metabolites at different harvest times were screened out based on variable importance in projection value, and among them, 94 DMs with regular trends of change in relative content (59 increased and 35 decreased with the growth period) were chosen to further research. The result of the multivariate statistical analysis showed that November was the optimal harvest period of LLF. Additionally, 10-hydroxyligustroside, oleoside 11-methyl ester, and salidroside were screened out to be used as the evaluation indicators of immature LLF, while specnuezhenide, nuezhenoside G13, and neonuezhenide were the evaluation indicators of mature LLF. This study provides fundamental insight for metabolite identification and proposes the best harvest period of LLF to avoid confusion in the medicinal market.


Subject(s)
Drugs, Chinese Herbal , Ligustrum , Drugs, Chinese Herbal/analysis , Ligustrum/chemistry , Chromatography, High Pressure Liquid/methods , Tandem Mass Spectrometry , Fruit/chemistry , Metabolomics
19.
Planta ; 258(4): 74, 2023 Sep 05.
Article in English | MEDLINE | ID: mdl-37668722

ABSTRACT

MAIN CONCLUSION: The hierarchical architecture of chromatins affects the gene expression level of glandular secreting trichomes and the artemisinin biosynthetic pathway-related genes, consequently bringing on huge differences in the content of artemisinin and its derivatives of A. annua. The plant of traditional Chinese medicine "Qinghao" is called Artemisia annua L. in Chinese Pharmacopoeia. High content and the total amount of artemisinin is the main goal of A. annua breeding, nevertheless, the change of chromatin organization during the artemisinin synthesis process has not been discovered yet. This study intended to find the roles of chromatin structure in the production of artemisinin through bioinformatics and experimental validation. Chromosome conformation capture analysis was used to scrutinize the interactions among chromosomes and categorize various scales of chromatin during artemisinin synthesis in A. annua. To confirm the effect of the changes in chromatin structure, Hi-C and RNA-sequencing were performed on two different strains to find the correlation between chromatin structure and gene expression levels on artemisinin synthesis progress and regulation. Our results revealed that the frequency of intra-chromosomal interactions was higher in the inter-chromosomal interactions between the root and leaves on a high artemisinin production strain (HAP) compared to a low artemisinin production strain (LAP). We found that compartmental transition was connected with interactions among different chromatins. Interestingly, glandular secreting trichomes (GSTs) and the artemisinin biosynthetic pathway (ABP) related genes were enriched in the areas which have the compartmental transition, reflecting the regulation of artemisinin synthesis. Topologically associated domain boundaries were associated with various distributions of genes and expression levels. Genes associated with ABP and GST in the adjacent loop were highly expressed, suggesting that epigenetic regulation plays an important role during artemisinin synthesis and glandular secreting trichomes production process. Chromatin structure could show an important status in the mechanisms of artemisinin synthesis process in A. annua.


Subject(s)
Artemisia annua , Artemisinins , Chromatin/genetics , Artemisia annua/genetics , Epigenesis, Genetic , Plant Breeding , Gene Expression
20.
Age Ageing ; 52(9)2023 09 01.
Article in English | MEDLINE | ID: mdl-37676841

ABSTRACT

OBJECTIVE: Given the importance of sleep in maintaining neurocognitive health, both sleep duration and quality might be component causes of dementia. However, the possible role of insomnia symptoms as risk factors for dementia remain uncertain. METHODS: We prospectively studied 22,078 participants in the Swedish National March Cohort who were free from dementia and stroke at baseline. Occurrence of dementia was documented by national registers during a median follow-up period of 19.2 years. Insomnia symptoms and sleep duration were ascertained by Karolinska Sleep Questionnaire. Multivariable Cox proportional hazards models were used to estimate hazard ratios (HR) and 95% confidence intervals (CI). RESULTS: Compared to participants without insomnia at baseline, those who reported any insomnia symptom experienced a greater incidence of dementia during follow-up (HR 1.08, 95% CI: 1.03, 1.35). Difficulty initiating sleep versus non-insomnia (HR 1.24, 95% CI: 1.02, 1.52), but not difficulty maintaining sleep or early morning awakening was associated with an increased risk of dementia. Short sleep duration was associated with increased risk of dementia (6 h vs. 8 h, HR 1.29, 95% CI: 1.11-1.51; 5 h vs. 8 h, HR 1.26, 95% CI: 1.00-1.57). Stratified analyses suggested that insomnia symptoms increased the risk of dementia only amongst participants with ≥7 h sleep (vs. non-insomnia HR 1.24, 95% CI: 1.00-1.54, P = 0.05), but not amongst short sleepers (<7 h). Short sleep duration also did not further inflate the risk of dementia amongst insomniacs. CONCLUSION: Insomnia and short sleep duration increase the risk of dementia amongst middle-aged to older adults.


Subject(s)
Dementia , Sleep Duration , Humans , Aged , Middle Aged , Prospective Studies , Sweden/epidemiology , Sleep , Dementia/diagnosis , Dementia/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL