Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 251
Filter
1.
Angew Chem Int Ed Engl ; : e202402880, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38758629

ABSTRACT

Lysine-specific peptide and protein modification strategies are widely used to study charge-related functions and applications. However, these strategies often result in the loss of the positive charge on lysine, significantly impacting the charge-related properties of proteins. Herein, we report a strategy to preserve the positive charge and selectively convert amines in lysine side chains to amidines using nitriles and hydroxylamine under aqueous conditions. Various unprotected peptides and proteins were successfully modified with a high conversion rate. Moreover, the reactive amidine moiety and derived modification site enable subsequent secondary modifications. Notably, positive charges were retained during the modification. Therefore, positive charge-related protein properties, such as liquid-liquid phase separation behaviour of α-synuclein, were not affected. This strategy was subsequently applied to a lysine rich protein to develop an amidine-containing coacervate DNA complex with outstanding mechanical properties. Overall, our innovative strategy provides a new avenue to explore the characteristics of positively charged proteins.

2.
Transl Psychiatry ; 14(1): 212, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38802408

ABSTRACT

Physical frailty and genetic factors are both risk factors for increased dementia; nevertheless, the joint effect remains unclear. This study aimed to investigated the long-term relationship between physical frailty, genetic risk, and dementia incidence. A total of 274,194 participants from the UK Biobank were included. We applied Cox proportional hazards regression models to estimate the association between physical frailty and genetic and dementia risks. Among the participants (146,574 females [53.45%]; mean age, 57.24 years), 3,353 (1.22%) new-onset dementia events were recorded. Compared to non-frailty, the hazard ratio (HR) for dementia incidence in prefrailty and frailty was 1.396 (95% confidence interval [CI], 1.294-1.506, P < 0.001) and 2.304 (95% CI, 2.030-2.616, P < 0.001), respectively. Compared to non-frailty and low polygenic risk score (PRS), the HR for dementia risk was 3.908 (95% CI, 3.051-5.006, P < 0.001) for frailty and high PRS. Furthermore, among the participants, slow walking speed (HR, 1.817; 95% CI, 1.640-2.014, P < 0.001), low physical activity (HR, 1.719; 95% CI, 1.545-1.912, P < 0.001), exhaustion (HR, 1.670; 95% CI, 1.502-1.856, P < 0.001), low grip strength (HR, 1.606; 95% CI, 1.479-1.744, P < 0.001), and weight loss (HR, 1.464; 95% CI, 1.328-1.615, P < 0.001) were independently associated with dementia risk compared to non-frailty. Particularly, precise modulation for different dementia genetic risk populations can also be identified due to differences in dementia risk resulting from the constitutive pattern of frailty in different genetic risk populations. In conclusion, both physical frailty and high genetic risk are significantly associated with higher dementia risk. Early intervention to modify frailty is beneficial for achieving primary and precise prevention of dementia, especially in those at high genetic risk.


Subject(s)
Dementia , Frailty , Genetic Predisposition to Disease , Humans , Female , Male , Dementia/genetics , Dementia/epidemiology , Frailty/genetics , Frailty/epidemiology , Middle Aged , Prospective Studies , Incidence , Aged , Risk Factors , United Kingdom/epidemiology , Proportional Hazards Models
3.
Food Chem ; 451: 139461, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38701733

ABSTRACT

Copper as a widely applied element in food supply chain can cause serious contamination issues that threats food safety. In this research, we present a quick and visible method for trace copper ion (Cu2+) quantification in practical food samples. Polymer dots (Pdots) were firstly conjugated with a copper-specific DNA aptamer and then tailored with rhodamine B (RhB) to extinguish the electrochemiluminescence (ECL) signal through a resonance energy transfer process. The selective release of RhB leads to signal restoration when exposed to trace Cu2+ levels, achieving remarkable linearity with the logarithm of Cu2+ concentration within the range of 1 ng/L to 10 µg/L with an impressively low limit of detection at 11.8 pg/L. Most notably, our device was also applicable on visualizing and quantifying trace Cu2+ (∼0.2 µg/g) in practical Glycyrrhiza uralensis Fisch. samples, underscoring its potential as a tool for the early prevention of potential copper contamination in food samples.


Subject(s)
Copper , Electrochemical Techniques , Food Contamination , Luminescent Measurements , Copper/analysis , Copper/chemistry , Food Contamination/analysis , Luminescent Measurements/instrumentation , Luminescent Measurements/methods , Electrochemical Techniques/instrumentation , Limit of Detection , Biosensing Techniques/instrumentation , Biosensing Techniques/methods , Food Analysis/methods , Aptamers, Nucleotide/chemistry , Quantum Dots/chemistry
4.
J Alzheimers Dis ; 99(4): 1273-1283, 2024.
Article in English | MEDLINE | ID: mdl-38728186

ABSTRACT

Background: Cardiovascular Risk Factors, Ageing and Dementia (CAIDE) risk score serves as a credible predictor of an individual's risk of dementia. However, studies on the link of the CAIDE score to Alzheimer's disease (AD) pathology are scarce. Objective: To explore the links of CAIDE score to cerebrospinal fluid (CSF) biomarkers of AD as well as to cognitive performance. Methods: In the Chinese Alzheimer's Biomarker and LifestylE (CABLE) study, we recruited 600 cognitively normal participants. Correlations between the CAIDE score and CSF biomarkers of AD as well as cognitive performance were probed through multiple linear regression models. Whether the correlation between CAIDE score and cognitive performance was mediated by AD pathology was researched by means of mediation analyses. Results: Linear regression analyses illustrated that CAIDE score was positively associated with tau-related biomarkers, including pTau (p < 0.001), tTau (p < 0.001), as well as tTau/Aß42 (p = 0.008), while it was in negative association with cognitive scores, consisting of MMSE score (p < 0.001) as well as MoCA score (p < 0.001). The correlation from CAIDE score to cognitive scores was in part mediated by tau pathology, with a mediation rate varying from 3.2% to 13.2%. Conclusions: A higher CAIDE score, as demonstrated in our study, was linked to more severe tau pathology and poorer cognitive performance, and tau pathology mediated the link of CAIDE score to cognitive performance. Increased dementia risk will lead to cognitive decline through aggravating neurodegeneration.


Subject(s)
Alzheimer Disease , Biomarkers , Cognition , tau Proteins , Humans , Male , Female , Alzheimer Disease/cerebrospinal fluid , Alzheimer Disease/diagnosis , Alzheimer Disease/pathology , Alzheimer Disease/psychology , Aged , Cognition/physiology , Biomarkers/cerebrospinal fluid , tau Proteins/cerebrospinal fluid , Middle Aged , Amyloid beta-Peptides/cerebrospinal fluid , Aging/psychology , Risk Factors , Neuropsychological Tests/statistics & numerical data , Cardiovascular Diseases , Aged, 80 and over , Peptide Fragments/cerebrospinal fluid
5.
Inorg Chem ; 63(16): 7442-7454, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38606439

ABSTRACT

As electrocatalysts, molecular catalysts with large aromatic systems (such as terpyridine, porphyrin, or phthalocyanine) have been widely applied in the CO2 reduction reaction (CO2RR). However, these monomeric catalysts tend to aggregate due to strong π-π interactions, resulting in limited accessibility of the active site. In light of these challenges, we present a novel strategy of active site isolation for enhancing the CO2RR. Six Ru(Tpy)2 were integrated into the skeleton of a metallo-organic supramolecule by stepwise self-assembly in order to form a rhombus-fused six-pointed star R1 with active site isolation. The turnover frequency (TOF) of R1 was as high as 10.73 s-1 at -0.6 V versus reversible hydrogen electrode (vs RHE), which is the best reported value so far at the same potential to our knowledge. Furthermore, by increasing the connector density on R1's skeleton, a more stable triangle-fused six-pointed star T1 was successfully synthesized. T1 exhibits exceptional stability up to 126 h at -0.4 V vs RHE and excellent TOF values of CO. The strategy of active site isolation and connector density increment significantly enhanced the catalytic activity by increasing the exposure of the active site. This work provides a starting point for the design of molecular catalysts and facilitates the development of a new generation of catalysts with a high catalytic performance.

6.
Front Bioeng Biotechnol ; 12: 1363742, 2024.
Article in English | MEDLINE | ID: mdl-38558788

ABSTRACT

In recent years, stem cells and their secretomes, notably exosomes, have received considerable attention in biomedical applications. Exosomes are cellular secretomes used for intercellular communication. They perform the function of intercellular messengers by facilitating the transport of proteins, lipids, nucleic acids, and therapeutic substances. Their biocompatibility, minimal immunogenicity, targetability, stability, and engineerable characteristics have additionally led to their application as drug delivery vehicles. The therapeutic efficacy of exosomes can be improved through surface modification employing functional molecules, including aptamers, antibodies, and peptides. Given their potential as targeted delivery vehicles to enhance the efficiency of treatment while minimizing adverse effects, exosomes exhibit considerable promise. Stem cells are considered advantageous sources of exosomes due to their distinctive characteristics, including regenerative and self-renewal capabilities, which make them well-suited for transplantation into injured tissues, hence promoting tissue regeneration. However, there are notable obstacles that need to be addressed, including immune rejection and ethical problems. Exosomes produced from stem cells have been thoroughly studied as a cell-free strategy that avoids many of the difficulties involved with cell-based therapy for tissue regeneration and cancer treatment. This review provides an in-depth summary and analysis of the existing knowledge regarding exosomes, including their engineering and cardiovascular disease (CVD) treatment applications.

7.
BMC Pulm Med ; 24(1): 179, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38622599

ABSTRACT

BACKGROUND: Anti-synthetase syndrome (AS) is a rare autoimmune idiopathic inflammatory myopathy (IIM) with diverse manifestations, including arthritis, interstitial lung disease (ILD), Raynaud's phenomenon, unexplained persistent fever, and mechanic's hands. CASE PRESENTATION: We present the case of a 72-year-old woman, previously healthy, who was admitted to our hospital for treatment of cough and rapid breathing. The patient had elevated white blood cells and C-reactive protein, and tested negative for severe acute respiratory syndrome coronavirus 2 (SARS-Cov-2). She was initially diagnosed with community-acquired pneumonia and received tamoxifen for anti-infection treatment, but her dystonia worsened. She eventually required non-invasive ventilator support, tested positive for SARS-Cov-2 again, and started antiviral therapy, corticosteroids to reduce alveolar effusion, anticoagulation, and other treatments. However, her condition continued to deteriorate, with the lowest oxygenation index reaching only 80mmHg. Ultimately, she underwent tracheal intubation and mechanical ventilation. Chest CT revealed rapid progressive interstitial changes in her lungs, and her hands showed noticeable fraternization changes. At this point, we suspected that the novel coronavirus infection might be associated with autoimmune diseases. The patient's autoimmune antibody spectrum showed positive results for anti-recombinant RO-52 antibody and myositis-specific antibody anti-alanyl tRNA synthetase (anti-PL-12). The patient was treated with dexamethasone sodium phosphate for anti-inflammatory and anti-fibrotic effects. After successful extubation, the patient was discharged with only oral prednisone tablets at a dose of 30 mg. CONCLUSIONS: This case presents an early diagnosis and successful treatment of anti-synthetase syndrome combined with SARS-Cov-2 infection, emphasizing the importance of comprehensive physical examination. Additionally, it highlights the rapid progression of interstitial lung disease under SARS-Cov-2 infection, which is often difficult to distinguish on imaging. In cases where treatment for SARS-Cov-2 infection is ineffective, early screening for autoimmune diseases is recommended. As there is currently no standardized method for treating AS-ILD, the successful treatment of this case provides a reference for clinical research on anti-synthetase syndrome in the later stage.


Subject(s)
Autoimmune Diseases , COVID-19 , Lung Diseases, Interstitial , Myositis , Humans , Female , Aged , COVID-19/complications , SARS-CoV-2 , Myositis/complications , Myositis/diagnosis , Myositis/drug therapy , Lung Diseases, Interstitial/complications , Lung Diseases, Interstitial/diagnosis , Lung Diseases, Interstitial/drug therapy , Autoimmune Diseases/complications , Autoantibodies
8.
J Neurochem ; 2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38533619

ABSTRACT

Though previous studies revealed the potential associations of elevated levels of plasma fibrinogen with dementia, there is still limited understanding regarding the influence of Alzheimer's disease (AD) biomarkers on these associations. We sought to investigate the interrelationships among fibrinogen, cerebrospinal fluid (CSF) AD biomarkers, and cognition in non-demented adults. We included 1996 non-demented adults from the Chinese Alzheimer's Biomarker and LifestylE (CABLE) study and 337 from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database. The associations of fibrinogen with AD biomarkers and cognition were explored using multiple linear regression models. The mediation analyses with 10 000 bootstrapped iterations were conducted to explore the mediating effects of AD biomarkers on cognition. In addition, interaction analyses and subgroup analyses were conducted to assess the influence of covariates on the relationships between fibrinogen and AD biomarkers. Participants exhibiting low Aß42 were designated as A+, while those demonstrating high phosphorylated tau (P-tau) and total tau (Tau) were labeled as T+ and N+, respectively. Individuals with normal measures of Aß42 and P-tau were categorized as the A-T- group, and those with abnormal levels of both Aß42 and P-tau were grouped under A+T+. Fibrinogen was higher in the A+ subgroup compared to that in the A- subgroup (p = 0.026). Fibrinogen was higher in the A+T+ subgroup compared to that in the A-T- subgroup (p = 0.011). Higher fibrinogen was associated with worse cognition and Aß pathology (all p < 0.05). Additionally, the associations between fibrinogen and cognition were partially mediated by Aß pathology (mediation proportion range 8%-28%). Interaction analyses and subgroup analyses showed that age and ApoE ε4 affect the relationships between fibrinogen and Aß pathology. Fibrinogen was associated with both cognition and Aß pathology. Aß pathology may be a critical mediator for impacts of fibrinogen on cognition.

9.
Alzheimers Res Ther ; 16(1): 65, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38532501

ABSTRACT

BACKGROUND: It has been reported that the risk of Alzheimer's disease (AD) could be predicted by the Australian National University Alzheimer Disease Risk Index (ANU-ADRI) scores. However, among non-demented Chinese adults, the correlations of ANU-ADRI scores with cerebrospinal fluid (CSF) core biomarkers and cognition remain unclear. METHODS: Individuals from the Chinese Alzheimer's Biomarker and LifestyLE (CABLE) study were grouped into three groups (low/intermediate/high risk groups) based on their ANU-ADRI scores. The multiple linear regression models were conducted to investigate the correlations of ANU-ADRI scores with several biomarkers of AD pathology. Mediation model and structural equation model (SEM) were conducted to investigate the mediators of the correlation between ANU-ADRI scores and cognition. RESULTS: A total of 1078 non-demented elders were included in our study, with a mean age of 62.58 (standard deviation [SD] 10.06) years as well as a female proportion of 44.16% (n = 476). ANU-ADRI scores were found to be significantly related with MMSE (ß = -0.264, P < 0.001) and MoCA (ß = -0.393, P < 0.001), as well as CSF t-tau (ß = 0.236, P < 0.001), p-tau (ß = 0.183, P < 0.001), and t-tau/Aß42 (ß = 0.094, P = 0.005). Mediation analyses indicated that the relationships of ANU-ADRI scores with cognitive scores were mediated by CSF t-tau or p-tau (mediating proportions ranging from 4.45% to 10.50%). SEM did not reveal that ANU-ADRI scores affected cognition by tau-related pathology and level of CSF soluble triggering receptor expressed on myeloid cells 2 (sTREM2). CONCLUSION: ANU-ADRI scores were associated with cognition and tau pathology. We also revealed a potential pathological mechanism underlying the impact of ANU-ADRI scores on cognition.


Subject(s)
Alzheimer Disease , Aged , Female , Humans , Middle Aged , Alzheimer Disease/cerebrospinal fluid , Amyloid beta-Peptides/cerebrospinal fluid , Australia , Biomarkers/cerebrospinal fluid , Cognition , Life Style , Peptide Fragments/cerebrospinal fluid , tau Proteins/cerebrospinal fluid , Male
10.
Aquat Toxicol ; 270: 106894, 2024 May.
Article in English | MEDLINE | ID: mdl-38492287

ABSTRACT

This review explains the sources of nanoplastics (NPs) and microplastics (MPs), their release, fate, and associated health risks in the aquatic environment. In the 21st century, scientists are grappling with a major challenge posed by MPs and NPs. The global production of plastic has skyrocketed from 1.5 million tons in the 1950s to an astonishing 390.7 million tons in 2021. This pervasive presence of these materials in our environment has spurred scientific inquiry into their potentially harmful effects on living organisms. Studies have revealed that while MPs, with their larger surface area, are capable of absorbing contaminants and pathogens from the surroundings, NPs can easily be transferred through the food chain. As a result, living organisms may ingest them and accumulate them within their bodies. Due to their minuscule size, NPs are particularly difficult to isolate and quantify. Furthermore, exposure to both NPs and MPs has been linked to various adverse health effects in aquatic species, including neurological impairments, disruption of lipid and energy metabolism, and increased susceptibility to cytotoxicity, oxidative stress, inflammation, and reactive oxygen species (ROS) production. It is alarming to note that MPs have even been detected in commercial fish, highlighting the severity of this issue. There are also challenges associated with elucidating the toxicological effects of NPs and MPs, which are discussed in detail in this review. In conclusion, plastic pollution is a pressing issue that governments should tackle by ensuring proper implementation of rules and regulations at national and provincial levels to reduce its health risks.


Subject(s)
Microplastics , Water Pollutants, Chemical , Animals , Microplastics/toxicity , Plastics/toxicity , Water Pollutants, Chemical/toxicity , Environmental Pollution , Energy Metabolism
11.
J Alzheimers Dis ; 98(2): 629-642, 2024.
Article in English | MEDLINE | ID: mdl-38427482

ABSTRACT

Background: Frailty is a vulnerability state increasing the risk of many adverse health outcomes, but little is known about the effects of frailty on neuropsychiatric health. Objective: To explore the associations between frailty and the risk of neuropsychiatric symptoms (NPSs) in Alzheimer's disease (AD), especially in its different clinical stages. Methods: We included 2,155 individuals assessed using modified frailty index-11 (mFI-11), Neuropsychiatric Inventory (NPI) and Neuropsychiatric Inventory Questionnaire (NPI-Q) in the Alzheimer's Disease Neuroimaging Initiative (ADNI). The relationships between frailty and NPSs were explored with logistic regression models and Cox proportional hazard regression models. Causal mediation analyses were conducted to explore the mediation factors between frailty and NPSs. Results: Among mild cognitive impairment (MCI) participants, frailty was cross-sectionally associated with an increased risk of apathy, and longitudinally associated with increased risk of depression and apathy. Among AD participants, frailty was cross-sectionally associated with increased risk of depression and anxiety, and longitudinally associated with an increased risk of apathy. Among participants with cognitive progression, frailty was associated with increased risk of depression and apathy. In MCI participants, the influence of frailty on NPSs was partially mediated by hippocampus volume, whole brain volume, and monocytes, with mediating proportions ranging from 8.40% to 9.29%. Conclusions: Frailty was associated with NPSs such as depression, anxiety, and apathy among MCI, AD, and cognitive progression participants. Atrophy of the hippocampus and whole brain, as well as peripheral immunity may be involved in the potential mechanisms underlying the above associations.


Subject(s)
Alzheimer Disease , Apathy , Cognitive Dysfunction , Frailty , Humans , Alzheimer Disease/complications , Alzheimer Disease/diagnostic imaging , Longitudinal Studies , Frailty/complications , Cognitive Dysfunction/psychology , Neuropsychological Tests
12.
Alzheimers Res Ther ; 16(1): 28, 2024 02 06.
Article in English | MEDLINE | ID: mdl-38321520

ABSTRACT

BACKGROUND: Cardiometabolic multimorbidity is associated with an increased risk of dementia, but the pathogenic mechanisms linking them remain largely undefined. We aimed to assess the associations of cardiometabolic multimorbidity with cerebrospinal fluid (CSF) biomarkers of Alzheimer's disease (AD) pathology to enhance our understanding of the underlying mechanisms linking cardiometabolic multimorbidity and AD. METHODS: This study included 1464 cognitively intact participants from the Chinese Alzheimer's Biomarker and LifestylE (CABLE) database. Cardiometabolic diseases (CMD) are a group of interrelated disorders such as hypertension, diabetes, heart diseases (HD), and stroke. Based on the CMD status, participants were categorized as CMD-free, single CMD, or CMD multimorbidity. CMD multimorbidity is defined as the coexistence of two or more CMDs. The associations of cardiometabolic multimorbidity and CSF biomarkers were examined using multivariable linear regression models with demographic characteristics, the APOE ε4 allele, and lifestyle factors as covariates. Subgroup analyses stratified by age, sex, and APOE ε4 status were also performed. RESULTS: A total of 1464 individuals (mean age, 61.80 years; age range, 40-89 years) were included. The markers of phosphorylated tau-related processes (CSF P-tau181: ß = 0.165, P = 0.037) and neuronal injury (CSF T-tau: ß = 0.065, P = 0.033) were significantly increased in subjects with CMD multimorbidity (versus CMD-free), but not in those with single CMD. The association between CMD multimorbidity with CSF T-tau levels remained significant after controlling for Aß42 levels. Additionally, significantly elevated tau-related biomarkers were observed in patients with specific CMD combinations (i.e., hypertension and diabetes, hypertension and HD), especially in long disease courses. CONCLUSIONS: The presence of cardiometabolic multimorbidity was associated with tau phosphorylation and neuronal injury in cognitively normal populations. CMD multimorbidity might be a potential independent target to alleviate tau-related pathologies that can cause cognitive impairment.


Subject(s)
Alzheimer Disease , Diabetes Mellitus , Hypertension , Adult , Humans , Middle Aged , Aged , Aged, 80 and over , Alzheimer Disease/cerebrospinal fluid , Apolipoprotein E4/cerebrospinal fluid , Multimorbidity , tau Proteins/cerebrospinal fluid , Amyloid beta-Peptides/cerebrospinal fluid , Biomarkers/cerebrospinal fluid , Peptide Fragments/cerebrospinal fluid
13.
J Affect Disord ; 349: 201-209, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38199419

ABSTRACT

BACKGROUND: Antipsychotics (APs) are among the most widely prescribed medications, and have been shown to cause cognitive decline. But previous studies on their effects on dementia risk are controversial and scarce. We aimed to examine the relationships of APs exposure with the risk of dementia. METHODS: Data were obtained from a prospective cohort of 415,100 UK Biobank (UKB) participants. We investigated the effects of APs exposure and their various classes on dementia risk by using multivariable Cox proportional hazard models and further the dose-response effects of oral APs. RESULTS: After a mean follow-up of 8.64 years, 5235 (1.3 %) participants developed all-cause dementia (ACD), among whom 2313 (0.6 %) developed Alzheimer's disease (AD), and 1213 (0.3 %) developed vascular dementia (VaD). Exposure to any APs conferred increased risks of ACD (HR: 1.33, 95 % CI = 1.17-1.51, P < 0.001) and VaD (HR: 1.90, 95 % CI = 1.51-2.40, P < 0.001), but not AD (HR: 1.22, 95 % CI = 1.00-1.48, P = 0.051). Cumulative dose-response relationships of oral APs with the risks of ACD and VaD were observed (P for trend, P < 0.05). LIMITATIONS: Our study is observational and does not show evidence of causality. Since there are relatively few cases of dementia in the UKB, APs exposure may be higher than estimated in our study. CONCLUSIONS: APs exposure increased the risk of developing dementia. Dose-response relationships were found between oral APs and dementia risk. Efforts to raise awareness of doctors and patients about this potential drug-related risk are critical to reducing APs use.


Subject(s)
Alzheimer Disease , Antipsychotic Agents , Cognitive Dysfunction , Dementia, Vascular , Humans , Prospective Studies , Antipsychotic Agents/adverse effects , Alzheimer Disease/complications , Dementia, Vascular/chemically induced , Dementia, Vascular/epidemiology , Cognitive Dysfunction/complications , Risk Factors
14.
NPJ Parkinsons Dis ; 10(1): 23, 2024 Jan 17.
Article in English | MEDLINE | ID: mdl-38233432

ABSTRACT

Inconsistent findings exist regarding the potential association between polluted air and Parkinson's disease (PD), with unclear insights into the role of inherited sensitivity. This study sought to explore the potential link between various air pollutants and PD risk, investigating whether genetic susceptibility modulates these associations. The population-based study involved 312,009 initially PD-free participants with complete genotyping data. Annual mean concentrations of PM2.5, PM10, NO2, and NOx were estimated, and a polygenic risk score (PRS) was computed to assess individual genetic risks for PD. Cox proportional risk models were employed to calculate hazard ratios (HR) and 95% confidence intervals (CI) for the associations between ambient air pollutants, genetic risk, and incident PD. Over a median 12.07-year follow-up, 2356 PD cases (0.76%) were observed. Compared to the lowest quartile of air pollution, the highest quartiles of NO2 and PM10 pollution showed HRs and 95% CIs of 1.247 (1.089-1.427) and 1.201 (1.052-1.373) for PD incidence, respectively. Each 10 µg/m3 increase in NO2 and PM10 yielded elevated HRs and 95% CIs for PD of 1.089 (1.026-1.155) and 1.363 (1.043-1.782), respectively. Individuals with significant genetic and PM10 exposure risks had the highest PD development risk (HR: 2.748, 95% CI: 2.145-3.520). Similarly, those with substantial genetic and NO2 exposure risks were over twice as likely to develop PD compared to minimal-risk counterparts (HR: 2.414, 95% CI: 1.912-3.048). Findings suggest that exposure to air contaminants heightens PD risk, particularly in individuals genetically predisposed to high susceptibility.

15.
Alzheimers Res Ther ; 16(1): 16, 2024 01 22.
Article in English | MEDLINE | ID: mdl-38254212

ABSTRACT

BACKGROUND: Blood-based biomarkers for dementia are gaining attention due to their non-invasive nature and feasibility in regular healthcare settings. Here, we explored the associations between 249 metabolites with all-cause dementia (ACD), Alzheimer's disease (AD), and vascular dementia (VaD) and assessed their predictive potential. METHODS: This study included 274,160 participants from the UK Biobank. Cox proportional hazard models were employed to investigate longitudinal associations between metabolites and dementia. The importance of these metabolites was quantified using machine learning algorithms, and a metabolic risk score (MetRS) was subsequently developed for each dementia type. We further investigated how MetRS stratified the risk of dementia onset and assessed its predictive performance, both alone and in combination with demographic and cognitive predictors. RESULTS: During a median follow-up of 14.01 years, 5274 participants developed dementia. Of the 249 metabolites examined, 143 were significantly associated with incident ACD, 130 with AD, and 140 with VaD. Among metabolites significantly associated with dementia, lipoprotein lipid concentrations, linoleic acid, sphingomyelin, glucose, and branched-chain amino acids ranked top in importance. Individuals within the top tertile of MetRS faced a significantly greater risk of developing dementia than those in the lowest tertile. When MetRS was combined with demographic and cognitive predictors, the model yielded the area under the receiver operating characteristic curve (AUC) values of 0.857 for ACD, 0.861 for AD, and 0.873 for VaD. CONCLUSIONS: We conducted the largest metabolome investigation of dementia to date, for the first time revealed the metabolite importance ranking, and highlighted the contribution of plasma metabolites for dementia prediction.


Subject(s)
Alzheimer Disease , Dementia, Vascular , Humans , Metabolome , Plasma , Alzheimer Disease/diagnosis , Alzheimer Disease/epidemiology , Algorithms
16.
J Neurochem ; 168(1): 39-51, 2024 01.
Article in English | MEDLINE | ID: mdl-38055867

ABSTRACT

Liver function has been suggested as a possible factor in the progression of Alzheimer's disease (AD) development. However, the association between liver function and cerebrospinal fluid (CSF) levels of AD biomarkers remains unclear. In this study, we analyzed the data from 1687 adults without dementia from the Chinese Alzheimer's Biomarker and LifestylE study to investigate differences in liver function between pathological and clinical AD groups, as defined by the 2018 National Institute on Aging-Alzheimer's Association Research Framework. We also examined the linear relationship between liver function, CSF AD biomarkers, and cognition using linear regression models. Furthermore, mediation analyses were applied to explore the potential mediation effects of AD pathological biomarkers on cognition. Our findings indicated that, with AD pathological and clinical progression, the concentrations of total protein (TP), globulin (GLO), and aspartate aminotransferase/alanine transaminase (ALT) increased, while albumin/globulin (A/G), adenosine deaminase, alpha-L-fucosidase, albumin, prealbumin, ALT, and glutamate dehydrogenase (GLDH) concentrations decreased. Furthermore, we also identified significant relationships between TP (ß = -0.115, pFDR < 0.001), GLO (ß = -0.184, pFDR < 0.001), and A/G (ß = 0.182, pFDR < 0.001) and CSF ß-amyloid1-42 (Aß1-42 ) (and its related CSF AD biomarkers). Moreover, after 10 000 bootstrapped iterations, we identified a potential mechanism by which TP and GLDH may affect cognition by mediating CSF AD biomarkers, with mediation effect sizes ranging from 3.91% to 16.44%. Overall, our results suggested that abnormal liver function might be involved in the clinical and pathological progression of AD. Amyloid and tau pathologies also might partially mediate the relationship between liver function and cognition. Future research is needed to fully understand the underlying mechanisms and causality to develop an approach to AD prevention and treatment approach.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Globulins , Humans , Alzheimer Disease/pathology , tau Proteins/cerebrospinal fluid , Amyloid beta-Peptides/cerebrospinal fluid , Biomarkers/cerebrospinal fluid , Albumins , Liver , Peptide Fragments/cerebrospinal fluid
17.
J Neurochem ; 168(1): 26-38, 2024 01.
Article in English | MEDLINE | ID: mdl-37830502

ABSTRACT

The relationship between liver dysfunction and dementia has been researched extensively but remains poorly understood. In this study, we investigate the longitudinal and cross-sectional associations between liver function and liver diseases and risk of incident dementia, impaired cognition, and brain structure abnormalities using Cox proportion hazard model and linear regression model. 431 699 participants with a mean of 8.65 (standard deviation [SD] 2.61) years of follow-up were included from the UK Biobank; 5542 all-cause dementia (ACD), 2427 Alzheimer's disease (AD), and 1282 vascular dementia (VaD) cases were documented. We observed that per SD decreases in alanine transaminase (ALT; hazard ratio [HR], 0.917; PFDR <0.001) and per SD increases in aspartate aminotransferase (AST; HR, 1.048; PFDR = 0.010), AST to ALT ratio (HR, 1.195; PFDR <0.001), gamma-glutamyl transpeptidase (GGT; HR, 1.066; PFDR <0.001), alcoholic liver disease (ALD; HR, 2.872; PFDR <0.001), and fibrosis and cirrhosis of liver (HR, 2.285; PFDR = 0.002), being significantly associated with a higher risk of incident ACD. Restricted cubic spline models identified a strong U-shaped association between Alb and AST and incident ACD (Pnonlinear <0.05). Worse cognition was positively correlated with AST, AST to ALT ratio, direct bilirubin (DBil), and GGT; negatively correlated with ALT, Alb, and total bilirubin (TBil); and ALD and fibrosis and cirrhosis of liver (PFDR <0.05). Moreover, changes in ALT, GGT, AST to ALT ratio, and ALD were significantly associated with altered cortical and subcortical regions, including hippocampus, amygdala, thalamus, pallidum, and fusiform (PFDR <0.05). In sensitivity analysis, metabolic dysfunction-associated steatotic liver disease (MASLD) was associated with the risk of ACD and brain subcortical changes. Our findings provide substantial evidence that liver dysfunction may be an important factor for incident dementia. Early intervention in the unhealthy liver may help prevent cognitive impairment and dementia incidence.


Subject(s)
Dementia , Liver Diseases , Adult , Humans , Prospective Studies , Cross-Sectional Studies , Liver Diseases/epidemiology , Liver , Cognition , Bilirubin , Brain , Liver Cirrhosis , Dementia/epidemiology , Aspartate Aminotransferases
18.
Gut Microbes ; 15(2): 2284247, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38057970

ABSTRACT

The occurrence and development of Parkinson's disease (PD) have been demonstrated to be related to gut dysbiosis, however, the impact of fecal microbiota transplantation (FMT) on microbiota engraftment in PD patients is uncertain. We performed a randomized, placebo-controlled trial at the Department of Neurology, Army Medical University Southwest Hospital in China (ChiCTR1900021405) from February 2019 to December 2019. Fifty-six participants with mild to moderate PD (Hoehn-Yahr stage 1-3) were randomly assigned to the FMT and placebo group, 27 patients in the FMT group and 27 in the placebo group completed the whole trial. During the follow-up, no severe adverse effect was observed, and patients with FMT treatment showed significant improvement in PD-related autonomic symptoms compared with the placebo group at the end of this trial (MDS-UPDRS total score, group×time effect, B = -6.56 [-12.98, -0.13], P < 0.05). Additionally, FMT improved gastrointestinal disorders and a marked increase in the complexity of the microecological system in patients. This study demonstrated that FMT through oral administration is clinically feasible and has the potential to improve the effectiveness of current medications in the clinical symptoms of PD patients.


Subject(s)
Gastrointestinal Microbiome , Parkinson Disease , Humans , Fecal Microbiota Transplantation/methods , Parkinson Disease/therapy , Dysbiosis/therapy , Dysbiosis/etiology , China , Treatment Outcome , Feces
19.
Global Spine J ; : 21925682231204159, 2023 Nov 03.
Article in English | MEDLINE | ID: mdl-37922496

ABSTRACT

STUDY DESIGN: Retrospective study. OBJECTIVES: Our objective is to create comprehensible machine learning (ML) models that can forecast bone cement leakage in percutaneous vertebral augmentation (PVA) for individuals with osteoporotic vertebral compression fracture (OVCF) while also identifying the associated risk factors. METHODS: We incorporated data from patients (n = 425) which underwent PVA. To predict cement leakage, we devised six models based on a variety of parameters. Evaluate and juxtapose the predictive performances relied on measures of discrimination, calibration, and clinical utility. SHapley Additive exPlanations (SHAP) methodology was used to interpret model and evaluate the risk factors associated with cement leakage. RESULTS: The occurrence rate of cement leakage was established at 50.4%. A binary logistic regression analysis identified cortical disruption (OR 6.880, 95% CI 4.209-11.246), the basivertebral foramen sign (OR 2.142, 95% CI 1.303-3.521), the fracture type (OR 1.683, 95% CI 1.083-2.617), and the volume of bone cement (OR 1.198, 95% CI 1.070-1.341) as independent predictors of cement leakage. The XGBoost model outperformed all others in predicting cement leakage in the testing set, with AUC of .8819, accuracy of .8025, recall score of .7872, F1 score of .8315, and a precision score of .881. Several important factors related to cement leakage were drawn based on the analysis of SHAP values and their clinical significance. CONCLUSION: The ML based predictive model demonstrated significant accuracy in forecasting bone cement leakage for patients with OVCF undergoing PVA. When combined with SHAP, ML facilitated a personalized prediction and offered a visual interpretation of feature importance.

20.
Front Cardiovasc Med ; 10: 1277676, 2023.
Article in English | MEDLINE | ID: mdl-38034377

ABSTRACT

Background: Genetic and acquired risk factors are fundamental to developing venous thromboembolism. Autosomal dominant protein S deficiency caused by pathogenic mutations in the PROS1 gene is a well-known risk factor for thrombophilia. Case presentation: We report a 30-year-old male patient who presented to the hospital with portal vein thrombosis. The patient had a history of abdominal pain for one month. Abdominal vascular CT showed venous thrombosis in the portal vein and superior mesenteric vein. He was diagnosed with "portal and superior mesenteric vein thrombosis, small bowel obstruction and necrosis, acute upper gastrointestinal bleeding (UGIB), hemorrhagic shock." Serum protein S levels were decreased, and gene sequencing revealed a heterozygous missense mutation in PROS1, c.1571T > G (p.Leu584Arg). The patient received anticoagulation therapy with Enoxaparin Sodium and rivaroxaban, transjugular intrahepatic portosystemic shunt (TIPS), and ICU treatments. Although the patient had a severe bleeding event during anticoagulation therapy, he recovered well after active treatment and dynamic monitoring of anti-Xa. Conclusion: Hereditary protein S deficiency caused by a mutation in the PROS1 gene is the genetic basis of this patient, and Enoxaparin Sodium and rivaroxaban have been shown to be highly effective.

SELECTION OF CITATIONS
SEARCH DETAIL
...