Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 40
Filter
Add more filters










Publication year range
1.
Front Neuroanat ; 16: 945295, 2022.
Article in English | MEDLINE | ID: mdl-36120100

ABSTRACT

The physiological aging process of the retina is accompanied by various and sometimes extensive changes: Macular degeneration, retinopathies and glaucoma are the most common findings in the elderly and can potentially lead to irreversible visual disablements up to blindness. To study the aging process and to identify possible therapeutic targets to counteract these diseases, the use of appropriate animal models is mandatory. Besides the most commonly used rodent species, a non-human primate, the common marmoset (Callithrix jacchus) emerged as a promising animal model of human aging over the last years. However, the visual aging process in this species is only partially characterized, especially with regard to retinal aberrations. Therefore, we assessed here for the first time potential changes in retinal morphology of the common marmoset of different age groups. By cell type specific immunolabeling, we analyzed different cell types and distributions, potential photoreceptor and ganglion cell loss, and structural reorganization. We detected no signs of age-related differences in staining patterns or densities of various cell populations. For example, there were no signs of photoreceptor degeneration, and there was only minimal sprouting of rod bipolar cells in aged retinas. Altogether, we describe here the maintenance of a stable neuronal architecture, distribution and number of different cell populations with only mild aberrations during the aging process in the common marmoset retina. These findings are in stark contrast to previously reported findings in rodent species and humans and deserve further investigations to identify the underlying mechanisms and possible therapeutic targets.

2.
Genome Biol Evol ; 13(12)2021 12 01.
Article in English | MEDLINE | ID: mdl-34791190

ABSTRACT

Molecular genetic data have recently been incorporated in attempts to reconstruct the ecology of the ancestral snake, though this has been limited by a paucity of data for one of the two main extant snake taxa, the highly fossorial Scolecophidia. Here we present and analyze vision genes from the first eye-transcriptomic and genome-wide data for Scolecophidia, for Anilios bicolor, and A. bituberculatus, respectively. We also present immunohistochemistry data for retinal anatomy and visual opsin-gene expression in Anilios. Analyzed in the context of 19 lepidosaurian genomes and 12 eye transcriptomes, the new genome-wide and transcriptomic data provide evidence for a much more reduced visual system in Anilios than in non-scolecophidian (=alethinophidian) snakes and in lizards. In Anilios, there is no evidence of the presence of 7 of the 12 genes associated with alethinophidian photopic (cone) phototransduction. This indicates extensive gene loss and many of these candidate gene losses occur also in highly fossorial mammals with reduced vision. Although recent phylogenetic studies have found evidence for scolecophidian paraphyly, the loss in Anilios of visual genes that are present in alethinophidians implies that the ancestral snake had a better-developed visual system than is known for any extant scolecophidian.


Subject(s)
Lizards , Transcriptome , Animals , Evolution, Molecular , Lizards/genetics , Mammals/genetics , Opsins/genetics , Phylogeny , Snakes/genetics
3.
Sci Rep ; 10(1): 5516, 2020 Mar 23.
Article in English | MEDLINE | ID: mdl-32251349

ABSTRACT

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

4.
J Comp Neurol ; 527(1): 13-37, 2019 01 01.
Article in English | MEDLINE | ID: mdl-28054342

ABSTRACT

The lemurs of Madagascar (Primates: Lemuriformes) are a monophyletic group that has lived in isolation from other primates for about 50 million years. Lemurs have diversified into species with diverse daily activity patterns and correspondingly different visual adaptations. We assessed the arrangements of retinal cone and rod photoreceptors in six nocturnal, three cathemeral and two diurnal lemur species and quantified different parameters in six of the species. The analysis revealed lower cone densities and higher rod densities in the nocturnal than in the cathemeral and diurnal species. The photoreceptor densities in the diurnal Propithecus verreauxi indicate a less "diurnal" retina than found in other diurnal primates. Immunolabeling for cone opsins showed the presence of both middle-to-longwave sensitive (M/L) and shortwave sensitive (S) cones in most species, indicating at least dichromatic color vision. S cones were absent in Allocebus trichotis and Cheirogaleus medius, indicating cone monochromacy. In the Microcebus species, the S cones had an inverse topography with very low densities in the central retina and highest densities in the peripheral retina. The S cones in the other species and the M/L cones in all species had a conventional topography with peak densities in the central area. With the exception of the cathemeral Eulemur species, the eyes of all studied taxa, including the diurnal Propithecus, possessed a tapetum lucidum, a feature only found among nocturnal and crepuscular mammals.


Subject(s)
Lemur/anatomy & histology , Photoreceptor Cells/cytology , Animals , Species Specificity
5.
Article in English | MEDLINE | ID: mdl-30350127

ABSTRACT

The avian magnetic inclination compass is based on radical pair processes, with cryptochrome (Cry) assumed to form the crucial radical pairs; it requires short-wavelength light from UV to green. Under high-intensity narrow-band lights and when yellow light is added, the magnetic compass is disrupted: migratory birds no longer prefer their migratory direction, but show other orientation responses. The candidate receptor molecule Cry1a is located in the shortwavelength-sensitive SWS1 cone photoreceptors in the retina. The present analysis of avian retinae after the respective illuminations showed that no activated Cry1a was present under 565 nm green light of medium and high intensity, and hardly any under high intensity 502 nm turquoise, whereas we found activated Cry1a at all three tested intensities of 373 nm UV and 424 nm blue light. Activated Cry1a also was found when 590 nm yellow light was added to low-intensity light of the four colors; yet these light combinations result in impaired magnetic orientation. This indicates that the disruption of the magnetic compass does not occur at the receptor level in the retina, but at higher processing stages, where the unnatural, almost monochromatic or bichromatic illumination causes yet unknown responses that interfere with the inclination compass.


Subject(s)
Avian Proteins/metabolism , Cryptochromes/metabolism , Light , Magnetic Fields , Retinal Cone Photoreceptor Cells/metabolism , Sensation/physiology , Animals , Chickens , Orientation/physiology , Photic Stimulation
6.
PLoS One ; 13(8): e0202089, 2018.
Article in English | MEDLINE | ID: mdl-30157204

ABSTRACT

The retinal rod pathway, featuring dedicated rod bipolar cells (RBCs) and AII amacrine cells, has been intensely studied in placental mammals. Here, we analyzed the rod pathway in a nocturnal marsupial, the South American opossum Monodelphis domestica to elucidate whether marsupials have a similar rod pathway. The retina was dominated by rods with densities of 338,000-413,000/mm². Immunohistochemistry for the RBC-specific marker protein kinase Cα (PKCα) and the AII cell marker calretinin revealed the presence of both cell types with their typical morphology. This is the first demonstration of RBCs in a marsupial and of the integration of RBCs and AII cells in the rod signaling pathway. Electron microscopy showed invaginating synaptic contacts of the PKCα-immunoreactive bipolar cells with rods; light microscopic co-immunolabeling for the synaptic ribbon marker CtBP2 confirmed dominant rod contacts. The RBC axon terminals were mostly located in the innermost stratum S5 of the inner plexiform layer (IPL), but had additional side branches and synaptic varicosities in strata S3 and S4, with S3-S5 belonging to the presumed functional ON sublayer of the IPL, as shown by immunolabeling for the ON bipolar cell marker Gγ13. Triple-immunolabeling for PKCα, calretinin and CtBP2 demonstrated RBC synapses onto AII cells. These features conform to the pattern seen in placental mammals, indicating a basically similar rod pathway in M. domestica. The density range of RBCs was 9,900-16,600/mm2, that of AII cells was 1,500-3,260/mm2. The numerical convergence (density ratio) of 146-156 rods to 4.7-6.0 RBCs to 1 AII cell is within the broad range found among placental mammals. For comparison, we collected data for the Australian nocturnal dunnart Sminthopsis crassicaudata, and found it to be similar to M. domestica, with rod-contacting PKCα-immunoreactive bipolar cells that had axon terminals also stratifying in IPL strata S3-S5.


Subject(s)
Night Vision , Retinal Rod Photoreceptor Cells/physiology , Animals , Marsupialia , Protein Kinase C/metabolism , Retinal Rod Photoreceptor Cells/metabolism , Retinal Rod Photoreceptor Cells/ultrastructure , Synapses/metabolism , Synapses/ultrastructure
7.
J Comp Neurol ; 526(13): 2078-2098, 2018 09 01.
Article in English | MEDLINE | ID: mdl-30001466

ABSTRACT

The red fox (Vulpes vulpes) is the carnivore with the widest distribution in the world. Not much is known about the visual system of these predominantly forest-dwelling animals. The closely related Arctic fox (Vulpes lagopus) lives in more open tundra habitats. In search for corresponding adaptations, we examined the photoreceptors and retinal ganglion cells (RGCs), using opsin immunohistochemistry, lucifer yellow injections and Nissl staining. Both species possess a majority of middle-to-longwave-sensitive (M/L) and a minority of shortwave-sensitive (S) cones, indicating dichromatic color vision. Area centralis peak cone densities are 22,600/mm2 in the red fox and 44,800/mm2 in the Arctic fox. Both have a centro-peripheral density decrease of M/L cones, and a dorsoventrally increasing density of S cones. Rod densities and rod/cone ratios are higher in the red fox than the Arctic fox. Both species possess the carnivore-typical alpha and beta RGCs. The RGC topography shows a centro-peripheral density gradient with a distinct area centralis (mean peak density 7,900 RGCs/mm2 in the red fox and 10,000 RGCs/mm2 in the Arctic fox), a prominent visual streak of higher RGC densities in the Arctic fox, and a moderate visual streak in the red fox. Visual acuity and estimated sound localization ability were nearly identical between both species. In summary, the red fox retina shows adaptations to nocturnal activity in a forest habitat, while the Arctic fox retina is better adapted to higher light levels in the open tundra.


Subject(s)
Foxes/physiology , Photoreceptor Cells, Vertebrate/physiology , Retinal Ganglion Cells/physiology , Animals , Color Vision/physiology , Environment , Eye/anatomy & histology , Immunohistochemistry , Opsins/metabolism , Retinal Cone Photoreceptor Cells/physiology , Retinal Rod Photoreceptor Cells/physiology , Sound Localization/physiology , Species Specificity , Visual Acuity/physiology
8.
Brain Behav Evol ; 89(2): 84-103, 2017.
Article in English | MEDLINE | ID: mdl-28437785

ABSTRACT

Elephants are precocial mammals that are relatively mature as newborns and mobile shortly after birth. To determine whether the retina of newborn elephants is capable of supporting the mobility of elephant calves, we compared the retinal structures of 2 newborn elephants (1 African and 1 Asian) and 2 adult animals of both species by immunohistochemical and morphometric methods. For the first time, we present here a comprehensive qualitative and quantitative characterization of the cellular composition of the newborn and the adult retinas of 2 elephant species. We found that the retina of elephants is relatively mature at birth. All retinal layers were well discernible, and various retinal cell types were detected in the newborns, including Müller glial cells (expressing glutamine synthetase and cellular retinal binding protein; CRALBP), cone photoreceptors (expressing S-opsin or M/L-opsin), protein kinase Cα-expressing bipolar cells, tyrosine hydroxylase-, choline acetyltransferase (ChAT)-, calbindin-, and calretinin-expressing amacrine cells, and calbindin-expressing horizontal cells. The retina of newborn elephants contains discrete horizontal cells which coexpress ChAT, calbindin, and calretinin. While the overall structure of the retina is very similar between newborn and adult elephants, various parameters change after birth. The postnatal thickening of the retinal ganglion cell axons and the increase in ganglion cell soma size are explained by the increase in body size after birth, and the decreases in the densities of neuronal and glial cells are explained by the postnatal expansion of the retinal surface area. The expression of glutamine synthetase and CRALBP in the Müller cells of newborn elephants suggests that the cells are already capable of supporting the activities of photoreceptors and neurons. As a peculiarity, the elephant retina contains both normally located and displaced giant ganglion cells, with single cells reaching a diameter of more than 50 µm in adults and therefore being almost in the range of giant retinal ganglion cells found in aquatic mammals. Some of these ganglion cells are displaced into the inner nuclear layer, a unique feature of terrestrial mammals. For the first time, we describe here the occurrence of many bistratified rod bipolar cells in the elephant retina. These bistratified bipolar cells may improve nocturnal contrast perception in elephants given their arrhythmic lifestyle.


Subject(s)
Elephants/anatomy & histology , Neuroglia , Neurons , Retina/cytology , Retina/growth & development , Visual Pathways/anatomy & histology , Age Factors , Animals , Animals, Newborn , Calbindin 2/metabolism , Calbindins/metabolism , Cerebellum/growth & development , Choline O-Acetyltransferase/metabolism , Eye/anatomy & histology , Female , Male , Mice , Nerve Tissue Proteins/metabolism , Neuroglia/metabolism , Neurons/metabolism , Opsins/metabolism , Optic Nerve/anatomy & histology , Optic Nerve/growth & development , Species Specificity , Tyrosine 3-Monooxygenase/metabolism
9.
PLoS One ; 11(12): e0168003, 2016.
Article in English | MEDLINE | ID: mdl-27942035

ABSTRACT

Thyroid hormone is a crucial regulator of gene expression in the developing and adult retina. Here we sought to map sites of thyroid hormone signaling at the cellular level using the transgenic FINDT3 reporter mouse model in which neurons express ß-galactosidase (ß-gal) under the control of a hybrid Gal4-TRα receptor when triiodothyronine (T3) and cofactors of thyroid receptor signaling are present. In the adult retina, nearly all neurons of the ganglion cell layer (GCL, ganglion cells and displaced amacrine cells) showed strong ß-gal labeling. In the inner nuclear layer (INL), a minority of glycineric and GABAergic amacrine cells showed ß-gal labeling, whereas the majority of amacrine cells were unlabeled. At the level of amacrine types, ß-gal labeling was found in a large proportion of the glycinergic AII amacrines, but only in a small proportion of the cholinergic/GABAergic 'starburst' amacrines. At postnatal day 10, there also was a high density of strongly ß-gal-labeled neurons in the GCL, but only few amacrine cells were labeled in the INL. There was no labeling of bipolar cells, horizontal cells and Müller glia cells at both stages. Most surprisingly, the photoreceptor somata in the outer nuclear layer also showed no ß-gal label, although thyroid hormone is known to control cone opsin expression. This is the first record of thyroid hormone signaling in the inner retina of an adult mammal. We hypothesize that T3 levels in photoreceptors are below the detection threshold of the reporter system. The topographical distribution of ß-gal-positive cells in the GCL follows the overall neuron distribution in that layer, with more T3-signaling cells in the ventral than the dorsal half-retina.


Subject(s)
Retina/metabolism , Signal Transduction , Thyroid Hormones/metabolism , Animals , Mice , Mice, Transgenic , Neurons/metabolism , Triiodothyronine/metabolism , beta-Galactosidase/metabolism
10.
PLoS One ; 11(3): e0150377, 2016.
Article in English | MEDLINE | ID: mdl-26953690

ABSTRACT

Cryptochromes, blue-light absorbing proteins involved in the circadian clock, have been proposed to be the receptor molecules of the avian magnetic compass. In birds, several cryptochromes occur: Cryptochrome 2, Cryptochrome 4 and two splice products of Cryptochrome 1, Cry1a and Cry1b. With an antibody not distinguishing between the two splice products, Cryptochrome 1 had been detected in the retinal ganglion cells of garden warblers during migration. A recent study located Cry1a in the outer segments of UV/V-cones in the retina of domestic chickens and European robins, another migratory species. Here we report the presence of cryptochrome 1b (eCry1b) in retinal ganglion cells and displaced ganglion cells of European Robins, Erithacus rubecula. Immuno-histochemistry at the light microscopic and electron microscopic level showed eCry1b in the cell plasma, free in the cytosol as well as bound to membranes. This is supported by immuno-blotting. However, this applies only to robins in the migratory state. After the end of the migratory phase, the amount of eCry1b was markedly reduced and hardly detectable. In robins, the amount of eCry1b in the retinal ganglion cells varies with season: it appears to be strongly expressed only during the migratory period when the birds show nocturnal migratory restlessness. Since the avian magnetic compass does not seem to be restricted to the migratory phase, this seasonal variation makes a role of eCry1b in magnetoreception rather unlikely. Rather, it could be involved in physiological processes controlling migratory restlessness and thus enabling birds to perform their nocturnal flights.


Subject(s)
Cryptochromes/genetics , Gene Expression Regulation , Passeriformes/genetics , Retinal Ganglion Cells/metabolism , Seasons , Animal Migration , Animals
11.
Sci Rep ; 6: 21848, 2016 Feb 22.
Article in English | MEDLINE | ID: mdl-26898837

ABSTRACT

Cryptochromes are a ubiquitous group of blue-light absorbing flavoproteins that in the mammalian retina have an important role in the circadian clock. In birds, cryptochrome 1a (Cry1a), localized in the UV/violet-sensitive S1 cone photoreceptors, is proposed to be the retinal receptor molecule of the light-dependent magnetic compass. The retinal localization of mammalian Cry1, homologue to avian Cry1a, is unknown, and it is open whether mammalian Cry1 is also involved in magnetic field sensing. To constrain the possible role of retinal Cry1, we immunohistochemically analysed 90 mammalian species across 48 families in 16 orders, using an antiserum against the Cry1 C-terminus that in birds labels only the photo-activated conformation. In the Carnivora families Canidae, Mustelidae and Ursidae, and in some Primates, Cry1 was consistently labeled in the outer segment of the shortwave-sensitive S1 cones. This finding would be compatible with a magnetoreceptive function of Cry1 in these taxa. In all other taxa, Cry1 was not detected by the antiserum that likely also in mammals labels the photo-activated conformation, although Western blots showed Cry1 in mouse retinal cell nuclei. We speculate that in the mouse and the other negative-tested mammals Cry1 is involved in circadian functions as a non-light-responsive protein.


Subject(s)
Circadian Rhythm/physiology , Cryptochromes/genetics , Mammals/physiology , Phylogeny , Retinal Cone Photoreceptor Cells/physiology , Animals , Birds/physiology , Canidae/physiology , Circadian Rhythm/radiation effects , Cone Opsins/genetics , Cryptochromes/chemistry , Gene Expression , Hominidae/physiology , Immune Sera/chemistry , Immunohistochemistry , Light , Magnetic Fields , Mammals/classification , Mustelidae/physiology , Protein Conformation , Protein Domains , Retinal Cone Photoreceptor Cells/radiation effects , Retinal Cone Photoreceptor Cells/ultrastructure , Ursidae/physiology
12.
J Comp Neurol ; 523(6): 963-81, 2015 Apr 15.
Article in English | MEDLINE | ID: mdl-25521284

ABSTRACT

We studied the retinal cone bipolar cells of Carollia perspicillata, a microchiropteran bat of the phyllostomid family. Microchiroptera are strongly nocturnal, with small eyes and rod-dominated retinae. However, they also possess a significant cone population (2-4%) comprising two spectral types, which are hence the basis for daylight and color vision. We used antibodies against the calcium-binding protein recoverin and the carbohydrate epitope 15 (CD15) as reliable markers for certain cone bipolar cells. Dye injections of recoverin- or CD15-prelabeled cone bipolar cells in vertical slices revealed the morphology of the axon terminal system of individual bipolar cells. Seven distinct cone bipolar cell types were identified. They differed in the morphology and stratification level of their axon terminal system in the inner plexiform layer and in immunoreactivity for recoverin and/or CD15. Additional immunocytochemical markers were used to assess the functional ON/OFF subdivision of the inner plexiform layer. In line with the extended thickness of the ON sublayer of the inner plexiform layer in the microbat retina, more ON than OFF cone bipolar cell types were found, namely, four versus three. Most likely, in the bats' predominantly dark environment, ON signals have greater importance for contrast perception. We conclude that the microbat retina conforms to the general mammalian blueprint, in which light signals of intensities above rod sensitivity are detected by cones and transmitted to various types of ON and OFF cone bipolar cells.


Subject(s)
Chiroptera/anatomy & histology , Retina/cytology , Retinal Bipolar Cells/physiology , Retinal Cone Photoreceptor Cells/physiology , Animals , Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels/metabolism , Lewis X Antigen/metabolism , Nerve Tissue Proteins/metabolism , Protein Kinase C-alpha/metabolism , Recoverin/metabolism , Visual Pathways/cytology
13.
J Exp Biol ; 217(Pt 23): 4221-4, 2014 Dec 01.
Article in English | MEDLINE | ID: mdl-25472972

ABSTRACT

Cryptochrome 1a, located in the UV/violet-sensitive cones in the avian retina, is discussed as receptor molecule for the magnetic compass of birds. Our previous immunohistochemical studies of chicken retinae with an antiserum that labelled only activated cryptochrome 1a had shown activation of cryptochrome 1a under 373 nm UV, 424 nm blue, 502 nm turquoise and 565 nm green light. Green light, however, does not allow the first step of photoreduction of oxidized cryptochromes to the semiquinone. As the chickens had been kept under 'white' light before, we suggested that there was a supply of the semiquinone present at the beginning of the exposure to green light, which could be further reduced and then re-oxidized. To test this hypothesis, we exposed chickens to various wavelengths (1) for 30 min after being kept in daylight, (2) for 30 min after a 30 min pre-exposure to total darkness, and (3) for 1 h after being kept in daylight. In the first case, we found activated cryptochrome 1a under UV, blue, turquoise and green light; in the second two cases we found activated cryptochrome 1a only under UV to turquoise light, where the complete redox cycle of cryptochrome can run, but not under green light. This observation is in agreement with the hypothesis that activated cryptochrome 1a is found as long as there is some of the semiquinone left, but not when the supply is depleted. It supports the idea that the crucial radical pair for magnetoreception is generated during re-oxidation.


Subject(s)
Cryptochromes/radiation effects , Light , Magnetic Fields , Orientation/physiology , Ultraviolet Rays , Animals , Chickens , Cryptochromes/chemistry , Cryptochromes/metabolism , Oxidation-Reduction , Retinal Cone Photoreceptor Cells/chemistry , Retinal Cone Photoreceptor Cells/radiation effects
14.
Article in English | MEDLINE | ID: mdl-25170345

ABSTRACT

BACKGROUND: Methyl-CpG binding protein 2 (MECP2) is a protein that specifically binds methylated DNA, thus regulating transcription and chromatin organization. Mutations in the gene have been identified as the principal cause of Rett syndrome, a severe neurological disorder. Although the role of MECP2 has been extensively studied in nervous tissues, still very little is known about its function and cell type specific distribution in other tissues. RESULTS: Using immunostaining on tissue cryosections, we characterized the distribution of MECP2 in 60 cell types of 16 mouse neuronal and non-neuronal tissues. We show that MECP2 is expressed at a very high level in all retinal neurons except rod photoreceptors. The onset of its expression during retina development coincides with massive synapse formation. In contrast to astroglia, retinal microglial cells lack MECP2, similar to microglia in the brain, cerebellum, and spinal cord. MECP2 is also present in almost all non-neural cell types, with the exception of intestinal epithelial cells, erythropoietic cells, and hair matrix keratinocytes. Our study demonstrates the role of MECP2 as a marker of the differentiated state in all studied cells other than oocytes and spermatogenic cells. MECP2-deficient male (Mecp2 (-/y) ) mice show no apparent defects in the morphology and development of the retina. The nuclear architecture of retinal neurons is also unaffected as the degree of chromocenter fusion and the distribution of major histone modifications do not differ between Mecp2 (-/y) and Mecp2 (wt) mice. Surprisingly, the absence of MECP2 is not compensated by other methyl-CpG binding proteins. On the contrary, their mRNA levels were downregulated in Mecp2 (-/y) mice. CONCLUSIONS: MECP2 is almost universally expressed in all studied cell types with few exceptions, including microglia. MECP2 deficiency does not change the nuclear architecture and epigenetic landscape of retinal cells despite the missing compensatory expression of other methyl-CpG binding proteins. Furthermore, retinal development and morphology are also preserved in Mecp2-null mice. Our study reveals the significance of MECP2 function in cell differentiation and sets the basis for future investigations in this direction.

15.
Vis Neurosci ; 31(2): 115-38, 2014 Mar.
Article in English | MEDLINE | ID: mdl-23895771

ABSTRACT

S cones expressing the short wavelength-sensitive type 1 (SWS1) class of visual pigment generally form only a minority type of cone photoreceptor within the vertebrate duplex retina. Hence, their primary role is in color vision, not in high acuity vision. In mammals, S cones may be present as a constant fraction of the cones across the retina, may be restricted to certain regions of the retina or may form a gradient across the retina, and in some species, there is coexpression of SWS1 and the long wavelength-sensitive (LWS) class of pigment in many cones. During retinal development, SWS1 opsin expression generally precedes that of LWS opsin, and evidence from genetic studies indicates that the S cone pathway may be the default pathway for cone development. With the notable exception of the cartilaginous fishes, where S cones appear to be absent, they are present in representative species from all other vertebrate classes. S cone loss is not, however, uncommon; they are absent from most aquatic mammals and from some but not all nocturnal terrestrial species. The peak spectral sensitivity of S cones depends on the spectral characteristics of the pigment present. Evidence from the study of agnathans and teleost fishes indicates that the ancestral vertebrate SWS1 pigment was ultraviolet (UV) sensitive with a peak around 360 nm, but this has shifted into the violet region of the spectrum (>380 nm) on many separate occasions during vertebrate evolution. In all cases, the shift was generated by just one or a few replacements in tuning-relevant residues. Only in the avian lineage has tuning moved in the opposite direction, with the reinvention of UV-sensitive pigments.


Subject(s)
Biological Evolution , Color Vision/physiology , Retina/cytology , Retina/physiology , Retinal Cone Photoreceptor Cells/cytology , Retinal Cone Photoreceptor Cells/physiology , Albinism/physiopathology , Amphibians , Animals , Birds , Cetacea , Fishes , Humans , Mammals , Opsins/genetics , Opsins/metabolism , Phylogeny , Reptiles , Retina/growth & development , Retinal Diseases/physiopathology , Retinal Pigments/metabolism , Species Specificity , Sulfonamides , Urea/analogs & derivatives
16.
Evol Biol ; 40: 542-553, 2013.
Article in English | MEDLINE | ID: mdl-24293738

ABSTRACT

A nocturnal activity pattern is central to almost all hypotheses on the adaptive origins of primates. This enduring view has been challenged in recent years on the basis of variation in the opsin genes of nocturnal primates. A correspondence between the opsin genes and activity patterns of species in Euarchonta-the superordinal group that includes the orders Primates, Dermoptera (colugos), and Scandentia (treeshrews)-could prove instructive, yet the basic biology of the dermopteran visual system is practically unknown. Here we show that the eye of the Sunda colugo (Galeopterus variegatus) lacks a tapetum lucidum and has an avascular retina, and we report on the expression and spectral sensitivity of cone photopigments. We found that Sunda colugos have intact short wavelength sensitive (S-) and long wavelength sensitive (L-) opsin genes, and that both opsins are expressed in cone photoreceptors of the retina. The inferred peak spectral sensitivities are 451 and 562 nm, respectively. In line with adaptation to nocturnal vision, cone densities are low. Surprisingly, a majority of S-cones coexpress some L-opsin. We also show that the ratio of rates of nonsynonymous to synonymous substitutions of exon 1 of the S-opsin gene is indicative of purifying selection. Taken together, our results suggest that natural selection has favored a functional S-opsin in a nocturnal lineage for at least 45 million years. Accordingly, a nocturnal activity pattern remains the most likely ancestral character state of euprimates.

17.
PLoS One ; 8(11): e80910, 2013.
Article in English | MEDLINE | ID: mdl-24260509

ABSTRACT

A quantitative analysis of photoreceptor properties was performed in the retina of the nocturnal deer mouse, Peromyscus maniculatus, using pigmented (wildtype) and albino animals. The aim was to establish whether the deer mouse is a more suitable model species than the house mouse for photoreceptor studies, and whether oculocutaneous albinism affects its photoreceptor properties. In retinal flatmounts, cone photoreceptors were identified by opsin immunostaining, and their numbers, spectral types, and distributions across the retina were determined. Rod photoreceptors were counted using differential interference contrast microscopy. Pigmented P. maniculatus have a rod-dominated retina with rod densities of about 450.000/mm(2) and cone densities of 3000-6500/mm(2). Two cone opsins, shortwave sensitive (S) and middle-to-longwave sensitive (M), are present and expressed in distinct cone types. Partial sequencing of the S opsin gene strongly supports UV sensitivity of the S cone visual pigment. The S cones constitute a 5-15% minority of the cones. Different from house mouse, S and M cone distributions do not have dorsoventral gradients, and coexpression of both opsins in single cones is exceptional (<2% of the cones). In albino P. maniculatus, rod densities are reduced by approximately 40% (270.000/mm(2)). Overall, cone density and the density of cones exclusively expressing S opsin are not significantly different from pigmented P. maniculatus. However, in albino retinas S opsin is coexpressed with M opsin in 60-90% of the cones and therefore the population of cones expressing only M opsin is significantly reduced to 5-25%. In conclusion, deer mouse cone properties largely conform to the general mammalian pattern, hence the deer mouse may be better suited than the house mouse for the study of certain basic cone properties, including the effects of albinism on cone opsin expression.


Subject(s)
Albinism/genetics , Cone Opsins/genetics , Peromyscus/physiology , Retinal Cone Photoreceptor Cells/metabolism , Retinal Rod Photoreceptor Cells/metabolism , Rod Opsins/genetics , Albinism/metabolism , Albinism/pathology , Animals , Cell Count , Cone Opsins/classification , Cone Opsins/metabolism , Female , Gene Expression , Male , Microscopy, Interference , Peromyscus/anatomy & histology , Peromyscus/growth & development , Retinal Cone Photoreceptor Cells/pathology , Retinal Rod Photoreceptor Cells/pathology , Rod Opsins/metabolism , Sequence Analysis, DNA , Species Specificity , Vision, Ocular/physiology
18.
J R Soc Interface ; 10(88): 20130638, 2013 Nov 06.
Article in English | MEDLINE | ID: mdl-23966619

ABSTRACT

The radical pair model proposes that the avian magnetic compass is based on radical pair processes in the eye, with cryptochrome, a flavoprotein, suggested as receptor molecule. Cryptochrome 1a (Cry1a) is localized at the discs of the outer segments of the UV/violet cones of European robins and chickens. Here, we show the activation characteristics of a bird cryptochrome in vivo under natural conditions. We exposed chickens for 30 min to different light regimes and analysed the amount of Cry1a labelled with an antiserum against an epitope at the C-terminus of this protein. The staining after exposure to sunlight and to darkness indicated that the antiserum labels only an illuminated, activated form of Cry1a. Exposure to narrow-bandwidth lights of various wavelengths revealed activated Cry1a at UV, blue and turquoise light. With green and yellow, the amount of activated Cry1a was reduced, and with red, as in the dark, no activated Cry1a was labelled. Activated Cry1a is thus found at all those wavelengths at which birds can orient using their magnetic inclination compass, supporting the role of Cry1a as receptor molecule. The observation that activated Cry1a and well-oriented behaviour occur at 565 nm green light, a wavelength not absorbed by the fully oxidized form of cryptochrome, suggests that a state other than the previously suggested Trp/FAD radical pair formed during photoreduction is crucial for detecting magnetic directions.


Subject(s)
Chickens/metabolism , Cryptochromes/physiology , Magnetic Fields , Orientation/physiology , Songbirds/physiology , Space Perception/physiology , Animals , Oxidation-Reduction/radiation effects , Photochemical Processes/radiation effects , Retinal Cone Photoreceptor Cells/metabolism , Ultraviolet Rays
19.
Cell ; 152(3): 584-98, 2013 Jan 31.
Article in English | MEDLINE | ID: mdl-23374351

ABSTRACT

Eukaryotic cells have a layer of heterochromatin at the nuclear periphery. To investigate mechanisms regulating chromatin distribution, we analyzed heterochromatin organization in different tissues and species, including mice with mutations in the lamin B receptor (Lbr) and lamin A (Lmna) genes that encode nuclear envelope (NE) proteins. We identified LBR- and lamin-A/C-dependent mechanisms tethering heterochromatin to the NE. The two tethers are sequentially used during cellular differentiation and development: first the LBR- and then the lamin-A/C-dependent tether. The absence of both LBR and lamin A/C leads to loss of peripheral heterochromatin and an inverted architecture with heterochromatin localizing to the nuclear interior. Myoblast transcriptome analyses indicated that selective disruption of the LBR- or lamin-A-dependent heterochromatin tethers have opposite effects on muscle gene expression, either increasing or decreasing, respectively. These results show how changes in NE composition contribute to regulating heterochromatin positioning, gene expression, and cellular differentiation during development.


Subject(s)
Heterochromatin/metabolism , Lamin Type A/metabolism , Muscle Development , Myoblasts/metabolism , Receptors, Cytoplasmic and Nuclear/metabolism , Animals , Gene Expression Profiling , Mice , Myoblasts/cytology , Nuclear Envelope/metabolism , Lamin B Receptor
20.
J Neurosci ; 33(3): 1014-23, 2013 Jan 16.
Article in English | MEDLINE | ID: mdl-23325239

ABSTRACT

We studied the retinal rod pathway of Carollia perspicillata and Glossophaga soricina, frugivorous microbats of the phyllostomid family. Protein kinase Cα (PKCα) immunolabeling revealed abundant rod bipolar cells (RBCs) with axon terminals in the innermost sublamina of the inner plexiform layer (IPL), which is typical for mammals. Extraordinarily, the RBC axons showed additional synaptic contacts in a second sublamina further out in the IPL. Dye injections of PKCα-prelabeled RBCs of C. perspicillata confirmed the bistratified axon morphology. The functional partition of the IPL into ON and OFF sublayers was shown by using antibodies against vesicular glutamate transporter 1 [labeling all ON and OFF bipolar cell (BC) axon terminals] and G-protein γ13 (labeling all ON BCs). The ON sublayer occupied 75% of the IPL thickness, including both strata of the RBC axons. RBC output onto putative AII amacrine cells (ACs), the crucial interneurons of the rod pathway, was identified by calretinin, PKCα, and CtBP2 triple immunolabeling. Dye injections of calretinin-prelabeled ACs revealed tristratification of the AII ACs corresponding to the bistratified RBCs. Triple immunolabeling for PKCα, nitric oxide synthetase (NOS), and either GABA(C) or CtBP2 indicated GABAergic feedback onto RBCs via NOS-immunoreactive ACs. AII output analysis showed glycineric synapses with glycine receptor α1 expression between AII cells and OFF cone BCs and connexin 36-labeled gap junctions between AII cells and ON cone BCs. We conclude that microbats have a well developed rod pathway with great similarities to that of other mammals, but with an unusual IPL stratification pattern of RBCs and AIIs.


Subject(s)
Amacrine Cells/cytology , Chiroptera/physiology , Retina/cytology , Retinal Bipolar Cells/cytology , Retinal Rod Photoreceptor Cells/cytology , Amacrine Cells/physiology , Animals , Dendrites/physiology , Interneurons/cytology , Interneurons/physiology , Retina/physiology , Retinal Bipolar Cells/physiology , Retinal Rod Photoreceptor Cells/physiology , gamma-Aminobutyric Acid/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...