Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 100
Filter
1.
Ecol Evol ; 14(6): e11532, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38882533

ABSTRACT

Harvest regulations commonly attenuate the consequences of hunting on specific segments of a population. However, regulations may not protect individuals from non-lethal effects of hunting and their consequences remain poorly understood. In this study, we compared the movement rates of Scandinavian brown bears (Ursus arctos, n = 47) across spatiotemporal variations in risk in relation to the onset of bear hunting. We tested two alternative hypotheses based on whether behavioural responses to hunting involve hiding or escaping. If bears try to reduce risk exposure by avoiding being detected by hunters, we expect individuals from all demographic groups to reduce their movement rate during the hunting season. On the other hand, if bears avoid hunters by escaping, we expect them to increase their movement rate in order to leave high-risk areas faster. We found an increased movement rate in females accompanied by dependent offspring during the morning hours of the bear hunting season, a general decrease in movement rate in adult lone females, and no changes in males and subadult females. The increased movement rate that we observed in females with dependant offspring during the hunting season was likely an antipredator response because it only occurred in areas located closer to roads, whereas the decreased movement rate in lone females could be either part of seasonal activity patterns or be associated with an increased selection for better concealment. Our study suggests that female brown bears accompanied by offspring likely move faster in high-risk areas to minimize risk exposure as well as the costly trade-offs (i.e. time spent foraging vs. time spent hiding) typically associated with anti-predator tactics that involve changes in resource selection. Our study also highlights the importance of modelling fine-scale spatiotemporal variations in risk to adequately capture the complexity in behavioural responses caused by human activities in wildlife.

2.
Ecol Evol ; 14(2): e11003, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38352198

ABSTRACT

Humans have exploited wild animals for thousands of years. Recent studies indicate that harvest-induced selection on life-history and morphological traits may lead to ecological and evolutionary changes. Less attention has been given to harvest-induced selection on behavioural traits, especially in terrestrial systems. We assessed in a wild population of large terrestrial mammals whether decades of hunting led to harvest-induced selection on trappability, a proxy of risk-taking behaviour. We investigated links between trappability, horn growth and survival across individuals in early life and quantified the correlations between early-life trappability and horn growth with availability to hunters and probability of being shot. We found positive among-individual correlations between early-life trappability and horn growth, early-life trappability and survival and early-life horn growth and survival. Faster growing individuals were more likely to be available to hunters and shot at a young age. We found no correlations between early-life trappability and availability to hunters or probability of being shot. Our results show that correlations between behaviour and growth can occur in wild terrestrial population but may be context dependent. This result highlights the difficulty in formulating general predictions about harvest-induced selection on behaviour, which can be affected by species ecology, harvesting regulations and harvesting methods used. Future studies should investigate mechanisms linking physiological, behavioural and morphological traits and how this effects harvest vulnerability to evaluate the potential for harvest to drive selection on behaviour in wild animal populations.

3.
Proc Biol Sci ; 290(2002): 20230511, 2023 07 12.
Article in English | MEDLINE | ID: mdl-37403509

ABSTRACT

The slow-fast continuum is a commonly used framework to describe variation in life-history strategies across species. Individual life histories have also been assumed to follow a similar pattern, especially in the pace-of-life syndrome literature. However, whether a slow-fast continuum commonly explains life-history variation among individuals within a population remains unclear. Here, we formally tested for the presence of a slow-fast continuum of life histories both within populations and across species using detailed long-term individual-based demographic data for 17 bird and mammal species with markedly different life histories. We estimated adult lifespan, age at first reproduction, annual breeding frequency, and annual fecundity, and identified the main axes of life-history variation using principal component analyses. Across species, we retrieved the slow-fast continuum as the main axis of life-history variation. However, within populations, the patterns of individual life-history variation did not align with a slow-fast continuum in any species. Thus, a continuum ranking individuals from slow to fast living is unlikely to shape individual differences in life histories within populations. Rather, individual life-history variation is likely idiosyncratic across species, potentially because of processes such as stochasticity, density dependence, and individual differences in resource acquisition that affect species differently and generate non-generalizable patterns across species.


Subject(s)
Life History Traits , Reproduction , Humans , Animals , Mammals , Birds
4.
Evol Appl ; 16(6): 1105-1118, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37360026

ABSTRACT

In terrestrial and marine ecosystems, migrants from protected areas may buffer the risk of harvest-induced evolutionary changes in exploited populations that face strong selective harvest pressures. Understanding the mechanisms favoring genetic rescue through migration could help ensure evolutionarily sustainable harvest outside protected areas and conserve genetic diversity inside those areas. We developed a stochastic individual-based metapopulation model to evaluate the potential for migration from protected areas to mitigate the evolutionary consequences of selective harvest. We parameterized the model with detailed data from individual monitoring of two populations of bighorn sheep subjected to trophy hunting. We tracked horn length through time in a large protected and a trophy-hunted populations connected through male breeding migrations. We quantified and compared declines in horn length and rescue potential under various combinations of migration rate, hunting rate in hunted areas and temporal overlap in timing of harvest and migrations, which affects the migrants' survival and chances to breed within exploited areas. Our simulations suggest that the effects of size-selective harvest on male horn length in hunted populations can be dampened or avoided if harvest pressure is low, migration rate is substantial, and migrants leaving protected areas have a low risk of being shot. Intense size-selective harvest impacts the phenotypic and genetic diversity in horn length, and population structure through changes in proportions of large-horned males, sex ratio and age structure. When hunting pressure is high and overlaps with male migrations, effects of selective removal also emerge in the protected population, so that instead of a genetic rescue of hunted populations, our model predicts undesirable effects inside protected areas. Our results stress the importance of a landscape approach to management, to promote genetic rescue from protected areas and limit ecological and evolutionary impacts of harvest on both harvested and protected populations.

5.
Ecol Appl ; 33(4): e2840, 2023 06.
Article in English | MEDLINE | ID: mdl-36912774

ABSTRACT

Hunters can affect the behavior of wildlife by inducing a landscape of fear, selecting individuals with specific traits, or altering resource availability across the landscape. Most research investigating the influence of hunting on wildlife resource selection has focused on target species and less attention has been devoted to nontarget species, such as scavengers that can be both attracted or repelled by hunting activities. We used resource selection functions to identify areas where hunters were most likely to kill moose (Alces alces) in south-central Sweden during the fall. Then, we used step-selection functions to determine whether female brown bears (Ursus arctos) selected or avoided these areas and specific resources during the moose hunting season. We found that, during both day and nighttime, female brown bears avoided areas where hunters were more likely to kill moose. We found evidence that resource selection by brown bears varied substantially during the fall and that some behavioral changes were consistent with disturbance associated with moose hunters. Brown bears were more likely to select concealed locations in young (i.e., regenerating) and coniferous forests and areas further away from roads during the moose hunting season. Our results suggest that brown bears react to both spatial and temporal variations in apparent risk during the fall: moose hunters create a landscape of fear and trigger an antipredator response in a large carnivore even if bears are not specifically targeted during the moose hunting season. Such antipredator responses might lead to indirect habitat loss and lower foraging efficiency and the resulting consequences should be considered when planning hunting seasons.


Subject(s)
Ursidae , Animals , Female , Ursidae/physiology , Hunting , Animals, Wild , Ecosystem , Fear
6.
Sci Total Environ ; 873: 162099, 2023 May 15.
Article in English | MEDLINE | ID: mdl-36764533

ABSTRACT

Lead (Pb) is heterogeneously distributed in the environment and multiple sources like Pb ammunition and fossil fuel combustion can increase the risk of exposure in wildlife. Brown bears (Ursus arctos) in Sweden have higher blood Pb levels compared to bears from other populations, but the sources and routes of exposure are unknown. The objective of this study was to quantify the contribution of two potential sources of Pb exposure in female brown bears (n = 34 individuals; n = 61 samples). We used multiple linear regressions to determine the contribution of both environmental Pb levels estimated from plant roots and moose (Alces alces) kills to blood Pb concentrations in female brown bears. We found positive relationships between blood Pb concentrations in bears and both the distribution of moose kills by hunters and environmental Pb levels around capture locations. Our results suggest that the consumption of slaughter remains discarded by moose hunters is a likely significant pathway of Pb exposure and this exposure is additive to environmental Pb exposure in female brown bears in Sweden. We suggest that spatially explicit models, incorporating habitat selection analyses of harvest data, may prove useful in predicting Pb exposure in scavengers.


Subject(s)
Deer , Ursidae , Animals , Lead , Animals, Wild , Ecosystem , Sweden
7.
Ecol Evol ; 12(12): e9582, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36514553

ABSTRACT

Measuring individual fitness empirically is required to assess selective pressures and predicts evolutionary changes in nature. There is, however, little consensus on how fitness should be empirically estimated. As fitness proxies vary in their underlying assumptions, their relative sensitivity to individual, environmental, and demographic factors may also vary. Here, using a long-term study, we aimed at identifying the determinants of individual fitness in bighorn sheep (Ovis canadensis) using seven fitness proxies. Specifically, we compared four-lifetime fitness proxies: lifetime breeding success, lifetime reproductive success, individual growth rate, individual contribution to population growth, and three multi-generational proxies: number of granddaughters, individual descendance in the next generation, and relative genetic contribution to the next generation. We found that all proxies were positively correlated, but the magnitude of the correlations varied substantially. Longevity was the main determinant of most fitness proxies. Individual fitness calculated over more than one generation was also affected by population density and growth rate. Because they are affected by contrasting factors, our study suggests that different fitness proxies should not be used interchangeably as they may convey different information about selective pressures and lead to divergent evolutionary predictions. Uncovering the mechanisms underlying variation in individual fitness and improving our ability to predict evolutionary change might require the use of several, rather than one, the proxy of individual fitness.

8.
Environ Pollut ; 315: 120427, 2022 Dec 15.
Article in English | MEDLINE | ID: mdl-36243189

ABSTRACT

Hunting has multiple consequences for wildlife, and it can be an important source of environmental pollution. Most big game hunters use lead (Pb) ammunition that shed metal fragments in the tissues of harvested animals. These Pb fragments become available to scavengers when hunters discard contaminated slaughter remains in the environment. This exposure route has been extensively studied in avian scavengers, but few studies have investigated Pb exposure from ammunition in mammals. Mammalian scavengers, including American black bears (Ursus americanus), frequently use slaughter remains discarded by hunters. The objective of this study was to investigate whether big game harvest density influenced long-term Pb exposure in American black bears from Quebec, Canada. Our results showed that female black bears had higher tooth Pb concentrations in areas with higher big game harvest densities, but such relationship was not evident in males. We also showed that older bears had higher tooth Pb concentrations compared to younger ones. Overall, our study showed that Pb exposure increases with age in black bears and that some of that Pb likely comes from bullet fragments embedded in slaughter remains discarded by hunters. These results suggest that hunters may drive mammalian scavengers into an evolutionary trap, whereby the long-term benefits of consuming slaughter remains could be negated due to increased Pb exposure.


Subject(s)
Ursidae , Animals , Male , Female , Lead , Animals, Wild , Birds , Canada
9.
Oecologia ; 199(4): 809-817, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35964263

ABSTRACT

Anthropogenic climate change and habitat alterations increase the importance of understanding the causes and consequences of variation in phenological traits. Although the timing of phenological events may vary in response to both direct and mediated effects, methods to measure and distinguish direct and mediated effects have seldom been used. We used a Bayesian structural equation model (SEM) to evaluate potential direct and mediated effects of intrinsic individual and environmental factors on the timing and progression of spring molt in bighorn sheep. The SEM showed that molt phenology varied across years, was earlier in prime-aged and in heavier individuals, slower in males, and later in lactating ewes, especially if they were light. These results highlight how individual variation in intrinsic traits and life-history leads to substantial variation in a phenological trait. Indirect effects in the SEM predicted a delay in sheep molt phenology at high population density mediated through negative density effects on body mass and lactation probability. Cooler temperatures in late spring were also predicted to delay molt phenology via a negative effect on body mass. Finally, lactation reduced ewe mass which was predicted to delay molt phenology. This mediated effect thus increased the total delay (sum of direct and mediated effects) in molt phenology experience by lactating ewes. Our results underline the importance of estimating direct and indirect effects when modeling phenological traits. Because indirect effects could substantially affect estimates of total plasticity, they should be critically important to accurately predict phenological mismatches and demographic consequences of environmental change.


Subject(s)
Adaptation, Physiological , Climate Change , Molting , Sheep, Bighorn , Animals , Bayes Theorem , Female , Lactation , Male , Seasons , Sheep
10.
Ecol Lett ; 25(7): 1640-1654, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35610546

ABSTRACT

Temporal correlations among demographic parameters can strongly influence population dynamics. Our empirical knowledge, however, is very limited regarding the direction and the magnitude of these correlations and how they vary among demographic parameters and species' life histories. Here, we use long-term demographic data from 15 bird and mammal species with contrasting pace of life to quantify correlation patterns among five key demographic parameters: juvenile and adult survival, reproductive probability, reproductive success and productivity. Correlations among demographic parameters were ubiquitous, more frequently positive than negative, but strongly differed across species. Correlations did not markedly change along the slow-fast continuum of life histories, suggesting that they were more strongly driven by ecological than evolutionary factors. As positive temporal demographic correlations decrease the mean of the long-run population growth rate, the common practice of ignoring temporal correlations in population models could lead to the underestimation of extinction risks in most species.


Subject(s)
Population Growth , Reproduction , Animals , Biological Evolution , Birds , Mammals , Population Dynamics
11.
Ecol Appl ; 32(7): e2645, 2022 10.
Article in English | MEDLINE | ID: mdl-35474622

ABSTRACT

Climate change predicts the increased frequency, duration, and intensity of inclement weather periods such as unseasonably low temperatures (i.e., cold snaps) and prolonged precipitation. Many migratory species have advanced the phenology of important life history stages and, as a result, are likely to be exposed to these periods of inclement spring weather more often, therefore risking reduced fitness and population growth. For declining avian species, including aerial insectivores, anthropogenic landscape changes such as agricultural intensification are another driver of population declines. These landscape changes may affect the foraging ability of food provisioning parents and reduce the survival of nestlings exposed to inclement weather through, for example, pesticide exposure impairing thermoregulation and punctual anorexia. Breeding in agro-intensive landscapes may therefore exacerbate the negative effects of inclement weather under climate change. We observed that a significant reduction in the availability of insect prey occurred when daily maximum temperatures fell below 18.3°C, and thereby defined any day when the maximum temperature fell below this value as a day witnessing a cold snap. We then combined daily information on the occurrence of cold snaps and measures of precipitation to assess their impact on the fledging success of Tree Swallows (Tachycineta bicolor) occupying a nest box system placed across a gradient of agricultural intensification. Estimated fledging success of this declining aerial insectivore was 36.2% lower for broods experiencing 4 cold-snap days during the 12 days post-hatching period versus broods experiencing none, and this relationship was worsened when facing more precipitation. We further found that the overall negative effects of a brood experiencing periods of inclement weather was exacerbated in more agro-intensive landscapes. Our results indicate that two of the primary hypothesized drivers of many avian population declines may interact to further increase the rate of declines in certain landscape contexts.


Subject(s)
Pesticides , Swallows , Agriculture , Animals , Rain , Swallows/physiology , Weather
12.
Proc Biol Sci ; 289(1971): 20212534, 2022 03 30.
Article in English | MEDLINE | ID: mdl-35317671

ABSTRACT

In polygynous species, secondary sexual traits such as weapons or elaborate ornaments have evolved through intrasexual competition for mates. In some species, these traits are present in both sexes but are underdeveloped in the sex facing lower intrasexual competition for mates. It is often assumed that these underdeveloped sexually selected traits are a vestige of strong sexual selection on the other sex. Here, we challenge this assumption and investigate whether the expression of secondary sexual traits is associated with fitness in female bighorn sheep. Analyses of 45 years of data revealed that female horn length at 2 years, while accounting for mass and environmental variables, is associated with younger age at primiparity, younger age of first offspring weaned, greater reproductive lifespan and higher lifetime reproductive success. There was no association between horn length and fecundity. These findings highlight a potential conservation issue. In this population, trophy hunting selects against males with fast-growing horns. Intersexual genetic correlations imply that intense selective hunting of large-horned males before they can reproduce can decrease female horn size. Therefore, intense trophy hunting of males based on horn size could reduce female reproductive performance through the associations identified here, and ultimately reduce population growth and viability.


Subject(s)
Horns , Sheep, Bighorn , Animals , Female , Hunting , Longevity , Male , Phenotype , Sheep
13.
Ecol Evol ; 12(3): e8692, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35342589

ABSTRACT

In some species where male mating success largely depends on intrasexual competition, males can adopt migratory or resident strategies to seek breeding opportunities. The resulting mixture of resident and migrant tactics within a population can have important ecological, genetic, and evolutionary consequences for metapopulations. Bighorn sheep Ovis canadensis males establish a linear dominance hierarchy that influences their mating tactics. Some males perform breeding migrations during the pre-rut and rut to seek mating opportunities, but little is known about these seasonal movements. We analyzed presence/absence data for 62 marked bighorn males during six mating seasons (20-32 males/year) in the Sheep River Provincial Park, Alberta, Canada, where hunting was not allowed. On average, about half of males left their natal population to rut elsewhere. The proportion of males leaving (yearly range 15%-69%) increased as the number of resident mature males increased and the populational sex ratio decreased, with fewer females during the pre-rut. Among those leaving the park, 24% did so in October, while the trophy sheep hunting season was open. Detailed monitoring of breeding migrations in protected populations could inform management strategies to limit evolutionary impacts of hunting, which can alter size-dependent mortality and create artificial pressures driving changes on heritable traits.

14.
Ecol Evol ; 12(3): e8742, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35342591

ABSTRACT

Documenting trophic niche partitioning and resource use within a community is critical to evaluate underlying mechanisms of coexistence, competition, or predation. Detailed knowledge about foraging is essential as it may influence the vital rates, which, in turn, can affect trophic relationships between species, and population dynamics. The aims of this study were to evaluate resource and trophic niche partitioning in summer/autumn between the endangered Atlantic-Gaspésie caribou (Rangifer tarandus caribou) population, moose (Alces americanus) and their incidental predators, the black bear (Ursus americanus) and coyote (Canis latrans), and to quantify the extent to which these predators consumed caribou. Bayesian isotopic analysis showed a small overlap in trophic niche for the two sympatric ungulates suggesting a low potential for resource competition. Our results also revealed that caribou occupied a larger isotopic niche area than moose, suggesting a greater diversity of resources used by caribou. Not surprisingly, coyotes consumed mainly deer (Odocoileus virginianus), moose, snowshoe hare (Lepus americanus), and occasionally caribou, while bears consumed mainly vegetation and, to a lesser extent, moose and caribou. As coyotes and bears also feed on plant species, we documented trophic niche overlap between caribou and their predators, as searching for similar resources can force them to use the same habitats and thus increase the encounter rate and, ultimately, mortality risk for caribou. Although the decline in the Gaspésie caribou population is mostly driven by habitat-mediated predation, we found evidence that the low level of resource competition with moose, added to the shared resources with incidental predators, mainly bears, may contribute to jeopardize the recovery of this endangered caribou population. Highlighting the trophic interaction between species is needed to establish efficient conservation and management strategies to insure the persistence of endangered populations. The comparison of trophic niches of species sharing the same habitat or resources is fundamental to evaluate the mechanisms of coexistence or competition and eventually predict the consequences of ecosystem changes in the community.

15.
Glob Chang Biol ; 28(1): 21-32, 2022 01.
Article in English | MEDLINE | ID: mdl-34619002

ABSTRACT

In species with long gestation, females commit to reproduction several months before parturition. If cues driving conception date are uncoupled from spring conditions, parturition could be mistimed. Mismatch may increase with global change if the rate of temporal changes in autumn cues differs from the rate of change in spring conditions. Using 17 years of data on climate and vegetation phenology, we show that autumn temperature and precipitation, but not vegetation phenology, explain parturition date in bighorn sheep. Although autumn cues drive the timing of conception, they do not predict conditions at parturition in spring. We calculated the mismatch between individual parturition date and spring green-up, assessed whether mismatch increased over time and investigated the consequences of mismatch on lamb neonatal survival, weaning mass and overwinter survival. Mismatch fluctuated over time but showed no temporal trend. Temporal changes in green-up date did not lead to major fitness consequence of mismatch. Detailed data on individually marked animals revealed no effect of mismatch on neonatal or overwinter survival, but lamb weaning mass was negatively affected by mismatch. Capital breeders might be less sensitive to mismatch than income breeders because they are less dependent on daily food acquisition. Herbivores in seasonal environments may access sufficient forage to sustain lactation before or after the spring 'peak' green-up, and partly mitigate the consequences of a mismatch. Thus, the effect of phenological mismatch on fitness may be affected by species life history, highlighting the complexity in quantifying trophic mismatches in the context of climate change.


Subject(s)
Climate Change , Sheep, Bighorn , Animals , Female , Herbivory , Seasons , Sheep , Temperature
16.
Mol Ecol ; 31(4): 1028-1043, 2022 02.
Article in English | MEDLINE | ID: mdl-34902193

ABSTRACT

Wild populations must continuously respond to environmental changes or they risk extinction. Those responses can be measured as phenotypic rates of change, which can allow us to predict contemporary adaptive responses, some of which are evolutionary. About two decades ago, a database of phenotypic rates of change in wild populations was compiled. Since then, researchers have used (and expanded) this database to examine phenotypic responses to specific types of human disturbance. Here, we update the database by adding 5675 new estimates of phenotypic change. Using this newer version of the data base, now containing 7338 estimates of phenotypic change, we revisit the conclusions of four published articles. We then synthesize the expanded database to compare rates of change across different types of human disturbance. Analyses of this expanded database suggest that: (i) a small absolute difference in rates of change exists between human disturbed and natural populations, (ii) harvesting by humans results in higher rates of change than other types of disturbance, (iii) introduced populations have increased rates of change, and (iv) body size does not increase through time. Thus, findings from earlier analyses have largely held-up in analyses of our new database that encompass a much larger breadth of species, traits, and human disturbances. Lastly, we use new analyses to explore how various types of human disturbances affect rates of phenotypic change, and we call for this database to serve as a steppingstone for further analyses to understand patterns of contemporary phenotypic change.


Subject(s)
Biological Evolution , Body Size , Phenotype
17.
Evol Appl ; 14(10): 2414-2432, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34745335

ABSTRACT

Harvest, through its intensity and regulation, often results in selection on female reproductive traits. Changes in female traits can have demographic consequences, as they are fundamental in shaping population dynamics. It is thus imperative to understand and quantify the demographic consequences of changes in female reproductive traits to better understand and anticipate population trajectories under different harvest intensities and regulations. Here, using a dynamic, frequency-dependent, population model of the intensively hunted brown bear (Ursus arctos) population in Sweden, we quantify and compare population responses to changes in four reproductive traits susceptible to harvest-induced selection: litter size, weaning age, age at first reproduction, and annual probability to reproduce. We did so for different hunting quotas and under four possible hunting regulations: (i) no individuals are protected, (ii) mothers but not dependent offspring are protected, (iii) mothers and dependent offspring of the year (cubs) are protected, and (iv) entire family groups are protected (i.e., mothers and dependent offspring of any age). We found that population growth rate declines sharply with increasing hunting quotas. Increases in litter size and the probability to reproduce have the greatest potential to affect population growth rate. Population growth rate increases the most when mothers are protected. Adding protection on offspring (of any age), however, reduces the availability of bears for hunting, which feeds back to increase hunting pressure on the nonprotected categories of individuals, leading to reduced population growth. Finally, we found that changes in reproductive traits can dampen population declines at very high hunting quotas, but only when protecting mothers. Our results illustrate that changes in female reproductive traits may have context-dependent consequences for demography. Thus, to predict population consequences of harvest-induced selection in wild populations, it is critical to integrate both hunting intensity and regulation, especially if hunting selectivity targets female reproductive strategies.

18.
Ecol Evol ; 11(22): 16296-16313, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34824828

ABSTRACT

Animals are expected to select a breeding habitat using cues that should reflect, directly or not, the fitness outcome of the different habitat options. However, human-induced environmental changes can alter the relationships between habitat characteristics and their fitness consequences, leading to maladaptive habitat choices. The most severe case of such nonideal habitat selection is the ecological trap, which occurs when individuals prefer to settle in poor-quality habitats while better ones are available. Here, we studied the adaptiveness of nest box selection in a tree swallow (Tachycineta bicolor) population breeding over a 10-year period in a network of 400 nest boxes distributed along a gradient of agricultural intensification in southern Québec, Canada. We first examined the effects of multiple environmental and social habitat characteristics on nest box preference to identify potential settlement cues. We then assessed the links between those cues and habitat quality as defined by the reproductive performance of individuals that settled early or late in nest boxes. We found that tree swallows preferred nesting in open habitats with high cover of perennial forage crops, high spring insect biomass, and high density of house sparrows (Passer domesticus), their main competitors for nest sites. They also preferred nesting where the density of breeders and their mean number of fledglings during the previous year were high. However, we detected mismatches between preference and habitat quality for several environmental variables. The density of competitors and conspecific social information showed severe mismatches, as their relationships to preference and breeding success went in opposite direction under certain circumstances. Spring food availability and agricultural landscape context, while related to preferences, were not related to breeding success. Overall, our study emphasizes the complexity of habitat selection behavior and provides evidence that multiple mechanisms may potentially lead to an ecological trap in farmlands.

19.
Science ; 374(6566): 394-395, 2021 Oct 22.
Article in English | MEDLINE | ID: mdl-34672762

ABSTRACT

Societal conflict leaves an evolutionary signature in wildlife.


Subject(s)
Tooth
20.
Ecol Appl ; 31(7): e02415, 2021 10.
Article in English | MEDLINE | ID: mdl-34278650

ABSTRACT

In the context of increasing global environmental changes, it has become progressively important to understand the effects of human activity on wildlife populations. Declines in several avian populations have been observed since the 1970s, especially with respect to many farmland and grassland birds, which also include some aerial insectivores. Changes in farming practices referred to as agricultural intensification coincide with these major avian declines. Among those practices, increased pesticide use is hypothesized to be a key driver of avian population declines as it can lead to both toxicological and trophic effects. While numerous laboratory studies report that birds experience acute and chronic effects upon consuming pesticide treated food, little is known about the effects of the exposure to multiple pesticides on wildlife in natural settings. We monitored the breeding activities of Tree Swallows (Tachycineta bicolor) on 40 farms distributed over a gradient of agricultural intensification in southern Québec, Canada, to evaluate the presence of pesticides in their diet and quantify the exposure effects of those compounds on their reproductive performance between 2013 and 2018. We first assessed the presence of 54 active agents (or derivatives) found in pesticides in 2,081 food boluses (insects) delivered to nestlings by parents and documented their spatial distribution within our study area. Second, we assessed the effect of pesticide exposure through food (number of active agents detected and number of contaminated boluses on a given farm for a given year, while controlling for sampling effort) on clutch size as well as hatching and fledging successes and nestling's mass upon fledging. Pesticides were ubiquitous in our study system and nearly half (46%) of food boluses were contaminated by at least one active agent. Yet we found no relationship between our proxies of food contamination by pesticides and Tree Swallow reproductive performance. More studies are needed to better understand the putative role of pesticides in the decline of farmland birds and aerial insectivores as potential sublethal effects of pesticides can carry over to later life stages and impact fitness.


Subject(s)
Pesticides , Swallows , Agriculture , Animals , Food , Humans , Pesticides/toxicity , Reproduction
SELECTION OF CITATIONS
SEARCH DETAIL
...