Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.178
Filter
1.
J Neurol ; 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38954034

ABSTRACT

OBJECTIVE: To evaluate the effectiveness and safety of nusinersen for the treatment of 5q-spinal muscular atrophy (SMA) among Chinese pediatric patients. METHODS: Using a longitudinal, multi-center registry, both prospective and retrospective data were collected from pediatric patients with 5q-SMA receiving nusinersen treatment across 18 centers in China. All patients fulfilling the eligibility criteria were included consecutively. Motor function outcomes were assessed post-treatment by SMA type. Safety profile was evaluated among patients starting nusinersen treatment post-enrollment. Descriptive analyses were used to report baseline characteristics, effectiveness, and safety results. RESULTS: As of March 2nd, 2023, 385 patients were included. Most patients demonstrated improvements or stability in motor function across all SMA types. Type II patients demonstrated mean changes [95% confidence interval (CI)] of 4.4 (3.4-5.4) and 4.1 (2.8-5.4) in Hammersmith Functional Motor Scale-Expanded (HFMSE), and 2.4 (1.7-3.1) and 2.3 (1.2-3.4) in Revised Upper Limb Module (RULM) scores at months 6 and 10. Type III patients exhibited mean changes (95% CI) of 3.9 (2.5-5.3) and 4.3 (2.6-6.0) in HFMSE, and 2.1 (1.2-3.0) and 1.5 (0.0-3.0) in RULM scores at months 6 and 10. Of the 132 patients, 62.9% experienced adverse events (AEs). Two patients experienced mild AEs (aseptic meningitis and myalgia) considered to be related to nusinersen by the investigator, with no sequelae. CONCLUSIONS: These data underscore the significance of nusinersen in Chinese pediatric patients with SMA regarding motor function improvement or stability, and support recommendations on nusinersen treatment by Chinese SMA guidelines and continuous coverage of nusinersen by basic medical insurance.

2.
Front Oncol ; 14: 1415748, 2024.
Article in English | MEDLINE | ID: mdl-38957321

ABSTRACT

Immune checkpoint inhibitors (ICIs) demonstrate unique advantages in the treatment of lung cancer and are widely used in the era of immunotherapy. However, ICIs can cause adverse reactions. Hematological toxicities induced by immunotherapy are relatively rare. Agranulocytosis, a rare hematologic adverse event associated with immune checkpoint inhibitors, has received limited attention in terms of treatment and patient demographics. Herein, we report the case of a 68-year-old male with non-small cell lung cancer(NSCLC) who received two cycles of programmed cell death-1 (PD-1) antibody sintilimab immunotherapy combined with albumin-bound paclitaxel and carboplatin chemotherapy and one cycle of sintilimab monotherapy. He was diagnosed with grade 4 neutropenia and sepsis (with symptoms of fever and chills) after the first two cycles of treatment. Teicoplanin was promptly initiated as antimicrobial therapy. The patient presented with sudden high fever and developed agranulocytosis on the day of the third cycle of treatment initiation, characterized by an absolute neutrophil count of 0.0×109/L. The patient was treated with granulocyte colony-stimulating factor but did not show improvement. He was then treated with corticosteroids, and absolute neutrophil counts gradually returned to normal levels. To the best of our knowledge, this is the first reported case of sintilimab-induced agranulocytosis in a patient with NSCLC. Sintilimab-induced severe neutropenia or agranulocytosis is a rare side effect that should be distinguished from chemotherapy-induced neutropenia and treated promptly with appropriate therapies; otherwise, the condition may worsen.

3.
Anal Chim Acta ; 1316: 342873, 2024 Aug 08.
Article in English | MEDLINE | ID: mdl-38969432

ABSTRACT

BACKGROUND: DNA walker-based strategies have gained significant attention in nucleic acid analysis. However, they face challenges related to balancing design complexity, sequence dependence, and amplification efficiency. Furthermore, most existing DNA walkers rely on walking and lock probes, requiring optimization of various parameters like DNA probe sequence, walking-to-lock probe ratio, lock probe length, etc. to achieve optimal performance. This optimization process is time-consuming and adds complexity to experiments. To enhance the performance and reliability of DNA walker nanomachines, there is a need for a simpler, highly sensitive, and selective alternative strategy. RESULTS: A sensitive and rapid miRNA analysis strategy named hairpin-shaped DNA aligner and nicking endonuclease-fueled DNA walker (HDA-NE DNA walker) was developed. The HDA-NE DNA walker was constructed by modifying hairpin-shaped DNA aligner (HDA) probe and substrate report (SR) probe on the surface of AuNPs. Under normal conditions, HDA and SR remained stable. However, in the presence of miR-373, HDA underwent a conformational transition to an activated structure to continuously cleave the SR probe on the AuNPs with the assistance of Nt.AlwI nicking endonuclease, resulting in sensitive miRNA detection with a detection limit as low as 0.23 pM. Additionally, the proposed HDA-NE DNA walker exhibited high selectivity in distinguishing miRNAs with single base differences and can effectively analyze miR-373 levels in both normal and breast cancer patient serums. SIGNIFICANCE: The proposed HDA-NE DNA walker system was activated by a conformational change of HDA probe only in the presence of the target miRNA, eliminating the need for a lock probe and without sequence dependence for SR probe. This strategy demonstrated a rapid reaction rate of only 30 min, minimal background noise, and a high signal-to-noise ratio (S/B) compared to capture/lock-based DNA walker. The method is expected to become a powerful tool and play an important role in disease diagnosis and precision therapy.


Subject(s)
DNA , MicroRNAs , MicroRNAs/blood , MicroRNAs/analysis , Humans , DNA/chemistry , Limit of Detection , Biosensing Techniques/methods , Gold/chemistry , Metal Nanoparticles/chemistry , DNA Probes/chemistry , DNA Probes/genetics , Endonucleases/metabolism , Endonucleases/chemistry , Inverted Repeat Sequences
4.
BMC Cancer ; 24(1): 789, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38956544

ABSTRACT

BACKGROUND: MicroRNA-1 (miR-1) is a tumour suppressor that can inhibit cell proliferation and invasion in several cancer types. In addition, miR-1 was found to be associated with drug sensitivity. Circulating miRNAs have been proven to be potential biomarkers with predictive and prognostic value. However, studies of miR-1 expression in the serum of breast cancer (BC) patients are relatively scarce, especially in patients receiving neoadjuvant chemotherapy (NAC). METHODS: Serum samples from 80 patients were collected before chemotherapy, and RT-PCR was performed to detect the serum expression of miR-1. The correlation between miR-1 expression in serum and clinicopathological factors, including pathological complete response (pCR), was analyzed by the chi-squared test and logistic regression. KEGG and GSEA analysis were also performed to determine the biological processes and signalling pathways involved. RESULTS: The miR-1 high group included more patients who achieved a pCR than did the miR-1 low group (p < 0.001). Higher serum miR-1 levels showed a strong correlation with decreased ER (R = 0.368, p < 0.001) and PR (R = 0.238, p = 0.033) levels. The univariate model of miR-1 for predicting pCR achieved an AUC of 0.705 according to the ROC curve. According to the interaction analysis, miR-1 interacted with Ki67 to predict the NAC response. According to the Kaplan-Meier plot, a high serum miR-1 level was related to better disease-free survival (DFS) in the NAC cohort. KEGG analysis and GSEA results indicated that miR-1 may be related to the PPAR signalling pathway and glycolysis. CONCLUSIONS: In summary, our data suggested that miR-1 could be a potential biomarker for pCR and survival outcomes in patients with BC treated with NAC.


Subject(s)
Biomarkers, Tumor , Breast Neoplasms , MicroRNAs , Neoadjuvant Therapy , Humans , Female , Breast Neoplasms/drug therapy , Breast Neoplasms/blood , Breast Neoplasms/genetics , Breast Neoplasms/mortality , Breast Neoplasms/pathology , Neoadjuvant Therapy/methods , MicroRNAs/blood , Biomarkers, Tumor/blood , Biomarkers, Tumor/genetics , Middle Aged , Prognosis , Adult , Aged , Treatment Outcome , Gene Expression Regulation, Neoplastic , Antineoplastic Combined Chemotherapy Protocols/therapeutic use
5.
World J Hepatol ; 16(6): 920-931, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38948441

ABSTRACT

BACKGROUND: Studies with large size samples on the liver histological changes of indeterminate phase chronic hepatitis B (CHB) patients were not previously conducted. AIM: To assess the liver histological changes in the indeterminate phase CHB patients using liver biopsy. METHODS: The clinical and laboratory data of 1532 untreated CHB patients were collected, and all patients had least once liver biopsy from January 2015 to December 2021. The significant differences among different phases of CHB infection were compared with t-test, and the risk factors of significant liver histological changes were analyzed by the multivariate logistic regression analysis. RESULTS: Among 1532 untreated CHB patients, 814 (53.13%) patients were in the indeterminate phase. Significant liver histological changes (defined as biopsy score ≥ G2 and/or ≥ S2) were found in 488/814 (59.95%) CHB patients in the indeterminate phase. Significant liver histological changes were significant differences among different age, platelets (PLTs), and alanine aminotransferase (ALT) subgroup in indeterminate patient. Multivariate logistic regression analysis indicated that age ≥ 40 years old [adjust odd risk (aOR), 1.44; 95% confidence interval (CI): 1.06-1.97; P = 0.02], PLTs ≤ 150 × 109/L (aOR, 2.99; 95%CI: 1.85-4.83; P < 0.0001), and ALT ≥ upper limits of normal (aOR, 1.48; 95%CI: 1.08, 2.05, P = 0.0163) were independent risk factors for significant liver histological changes in CHB patients in the indeterminate phase. CONCLUSION: Our results suggested that significant liver histological changes were not rare among the untreated CHB patients in indeterminate phase, and additional strategies are urgently required for the management of these patients.

6.
RSC Adv ; 14(26): 18258-18270, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38911269

ABSTRACT

High entropy alloys (HEAs) exhibit superior mechanical properties. However, the nanoscratching properties and deformation behaviour of FeCoCrNiAl0.5 HEAs remain unknown at the nanoscale. Here, we investigate the effect of scratching depth on the microstructural and tribological characteristics of an FeCoCrNiAl0.5 HEA using molecular dynamics simulations combined with a physical model. The scratching force increases significantly as the scratching depth increases. In the lower part of the scratching region, there is a clear atomic movement process, with the load generated in the normal direction causing the atoms to shift downwards. Noticeable shear bands are formed in the subsurface area, and they are both small and narrow compared with the pure Ni. The plastic deformation mechanism of the compressed surface is mainly governed by the formation and expansion of stacking faults during the subsurface evolution process. The evolution process of screw dislocations is similar to that of edge dislocations. In addition, the high strength and deformation resistance of FeCoCrNiAl0.5 HEAs are further evaluated by establishing a microstructure-based physical model. The combined effect of the lattice distortion strengthening and dislocation strengthening promotes the high strength of the FeCoCrNiAl0.5 HEA, which is significantly better than the single strengthening mechanism of pure metals. These results accelerate the understanding of the mechanical properties and deformation mechanisms of HEAs.

8.
Imeta ; 3(1): e173, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38868517

ABSTRACT

The spike-in plasmid method was utilized to perform an analysis on meconium and second-pass feces, yielding both relative and absolute quantitative results. With the absolute quantitative data, the abundance of bacteria in 17 meconium samples and 17 second-pass fecal samples were found to be 1.14 × 107 and 1.59 × 109 copies/g, respectively. The mode of delivery can significantly influence the alterations and compositions of gut bacteria in a newborn within 72 h.

9.
Front Nutr ; 11: 1356038, 2024.
Article in English | MEDLINE | ID: mdl-38868554

ABSTRACT

Introduction: Obesity is a multi-factorial disease frequently associated with poor nutritional habits and linked to many detrimental health outcomes. Individuals with obesity are more likely to have increased levels of persistent inflammatory and metabolic dysregulation. The goal of this study was to compare four dietary patterns differentiated by macronutrient content in a postmenopausal model. Dietary patterns were high carbohydrate (HC), high fat (HF), high carbohydrate plus high fat (HCHF), and high protein (HP) with higher fiber. Methods: Changes in body weight and glucose levels were measured in female, ovariectomized C57BL/6 mice after 15 weeks of feeding. One group of five mice fed the HCHF diet was crossed over to the HP diet on day 84, modeling a 21-day intervention. In a follow-up study comparing the HCHF versus HP dietary patterns, systemic changes in inflammation, using an 80-cytokine array and metabolism, by untargeted liquid chromatography-mass spectrometry (LCMS)-based metabolomics were evaluated. Results: Only the HF and HCHF diets resulted in obesity, shown by significant differences in body weights compared to the HP diet. Body weight gains during the two-diet follow-up study were consistent with the four-diet study. On Day 105 of the 4-diet study, glucose levels were significantly lower for mice fed the HP diet than for those fed the HC and HF diets. Mice switched from the HCHF to the HP diet lost an average of 3.7 grams by the end of the 21-day intervention, but this corresponded with decreased food consumption. The HCHF pattern resulted in dramatic inflammatory dysregulation, as all 80 cytokines were elevated significantly in the livers of these mice after 15 weeks of HCHF diet exposure. Comparatively, only 32 markers changed significantly on the HP diet (24 up, 8 down). Metabolic perturbations in several endogenous biological pathways were also observed based on macronutrient differences and revealed dysfunction in several nutritionally relevant biosynthetic pathways. Conclusion: Overall, the HCHF diet promoted detrimental impacts and changes linked to several diseases, including arthritis or breast neoplasms. Identification of dietary pattern-specific impacts in this model provides a means to monitor the effects of disease risk and test interventions to prevent poor health outcomes through nutritional modification.

10.
Ann Neurol ; 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38877824

ABSTRACT

OBJECTIVE: The aim of this study was to explore the pathogenesis of CLCN6-related disease and to assess whether its Cl-/H+-exchange activity is crucial for the biological role of ClC-6. METHODS: We performed whole-exome sequencing on a girl with development delay, intractable epilepsy, behavioral abnormities, retinal dysfunction, progressive brain atrophy, suggestive of neuronal ceroid lipofuscinoses (NCLs). We generated and analyzed the first knock-in mouse model of a patient variant (p.E200A) and compared it with a Clcn6-/- mouse model. Additional functional tests were performed with heterologous expression of mutant ClC-6. RESULTS: We identified a de novo heterozygous p.E200A variant in the proband. Expression of disease-causing ClC-6E200A or ClC-6Y553C mutants blocked autophagic flux and activated transcription factors EB (TFEB) and E3 (TFE3), leading to autophagic vesicle and cholesterol accumulation. Such alterations were absent with a transport-deficient ClC-6E267A mutant. Clcn6E200A/+ mice developed severe neurodegeneration with typical features of NCLs. Mutant ClC-6E200A, but not loss of ClC-6 in Clcn6-/- mice, increased lysosomal biogenesis by suppressing mTORC1-TFEB signaling, blocked autophagic flux through impairing lysosomal function, and increased apoptosis. Carbohydrate and lipid deposits accumulated in Clcn6E200A/+ brain, while only lipid storage was found in Clcn6-/- brain. Lysosome dysfunction, autophagy defects, and gliosis were early pathogenic events preceding neuron loss. INTERPRETATION: CLCN6 is a novel genetic cause of NCLs, highlighting the importance of considering CLCN6 mutations in the diagnostic workup for molecularly undefined forms of NCLs. Uncoupling of Cl- transport from H+ countertransport in the E200A mutant has a dominant effect on the autophagic/lysosomal pathway. ANN NEUROL 2024.

11.
Oncologist ; 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38886156

ABSTRACT

BACKGROUND: Immune checkpoint inhibitors (ICIs) have revolutionized cancer care with incredible reductions in mortality. One of the most devastating complications of treatment is ICI-related pneumonitis (ICI-p). Despite this, little is known regarding risk factors for severe pneumonitis and treatment effectiveness of various therapeutic options for steroid-refractory disease. To address this, we conducted a retrospective study on patients with cancer who developed ICI-p. METHODS: We examined consecutive patients who received ICIs and developed ICI-p. Risk factors of interest for severe disease and steroid-refractory ICI-p, including pre-treatment pulmonary function tests (PFTs) and chest imaging, were compared between patients with severe (grades 3-5) and mild (grades 1-2) pneumonitis. The clinical and treatment courses for patients with steroid-refractory ICI-p were recorded. RESULTS: A total of 132 patients developed ICI-p, with 60 patients having mild and 72 with severe disease. We found that lower forced vital capacity percent predicted (66.24 vs 85.05, P = .05), lower total lung capacity percent predicted (85.23 vs 99.71, P = .13), and specific radiographic patterns on pre-treatment chest imaging were predictors of severe disease. Initial corticosteroid dose of less than 1 milligram per kilogram prednisone equivalent (P = .14) was correlated with partially steroid-responsive or steroid-refractory ICI-p. Ten patients had steroid refractory ICI-p, and those who received IVIG alone as the immune suppressant beyond corticosteroids had improved survival (P = 05). CONCLUSIONS: We are the first to identify pre-treatment PFTs and chest imaging abnormalities as risk factors for severe ICI-p. We also found that lower corticosteroid doses were associated with partially steroid-responsive and steroid-refractory ICI-p. Larger, prospective studies are needed to validate our results.

12.
Front Nutr ; 11: 1401881, 2024.
Article in English | MEDLINE | ID: mdl-38846540

ABSTRACT

Background: Currently, there is limited and inconsistent evidence regarding the risk association between daily dietary intake, antioxidants, minerals, and vitamins with Childhood Asthma (CA). Therefore, this study employs Mendelian Randomization (MR) methodology to systematically investigate the causal relationships between daily dietary intake, serum antioxidants, serum minerals, and the circulating levels of serum vitamins with CA. Methods: This study selected factors related to daily dietary intake, including carbohydrates, proteins, fats, and sugars, as well as serum antioxidant levels (lycopene, uric acid, and ß-carotene), minerals (calcium, copper, selenium, zinc, iron, phosphorus, and magnesium), and vitamins (vitamin A, vitamin B6, folate, vitamin B12, vitamin C, vitamin D, and vitamin E), using them as Instrumental Variables (IVs). Genetic data related to CA were obtained from the FinnGen and GWAS Catalog databases, with the primary analytical methods being Inverse Variance Weighting (IVW) and sensitivity analysis. Results: Following MR analysis, it is observed that sugar intake (OR: 0.71, 95% CI: 0.55-0.91, P: 0.01) is inversely correlated with the risk of CA, while the intake of serum circulating magnesium levels (OR: 1.63, 95% CI: 1.06-2.53, P: 0.03), fats (OR: 1.44, 95% CI: 1.06-1.95, P: 0.02), and serum vitamin D levels (OR: 1.14, 95% CI: 1.04-1.25, P: 0.02) are positively associated with an increased risk of CA. Conclusion: This study identified a causal relationship between the daily dietary intake of sugars and fats, as well as the magnesium and vitamin D levels in serum, and the occurrence of CA. However, further in-depth research is warranted to elucidate the specific mechanisms underlying these associations.

13.
J Cell Mol Med ; 28(12): e18451, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38898783

ABSTRACT

Exosomes derived from bone marrow-derived mesenchymal stem cells (BMSCs) can alleviate the symptoms of pelvic floor dysfunction (PFD) in rats. However, the potential therapeutical effects of exosomes derived from BMSCs treated with tumour necrosis factor (TNF)-α on the symptoms of PFD in rats are unknown. Exosomes extracted from BMSCs treated with or without TNF-α were applied to treat PFD rats. Our findings revealed a significant elevation in interleukin (IL)-6 and TNF-α, and matrix metalloproteinase-2 (MMP2) levels in the vaginal wall tissues of patients with pelvic organ prolapse (POP) compared with the control group. Daily administration of exosomes derived from BMSCs, treated either with or without TNF-α (referred to as Exo and TNF-Exo), resulted in increased void volume and bladder void pressure, along with reduced peak bladder pressure and leak point pressure in PFD rats. Notably, TNF-Exo treatment demonstrated superior efficacy in restoring void volume, bladder void pressure and the mentioned parameters compared with Exo treatment. Importantly, TNF-Exo exhibited greater potency than Exo in restoring the levels of multiple proteins (Elastin, Collagen I, Collagen III, IL-6, TNF-α and MMP2) in the anterior vaginal walls of PFD rats. The application of exosomes derived from TNF-α-treated BMSCs holds promise as a novel therapeutic approach for treating PFD.


Subject(s)
Exosomes , Matrix Metalloproteinase 2 , Mesenchymal Stem Cells , Pelvic Organ Prolapse , Tumor Necrosis Factor-alpha , Animals , Exosomes/metabolism , Exosomes/transplantation , Mesenchymal Stem Cells/metabolism , Female , Tumor Necrosis Factor-alpha/metabolism , Rats , Humans , Pelvic Organ Prolapse/therapy , Pelvic Organ Prolapse/metabolism , Matrix Metalloproteinase 2/metabolism , Rats, Sprague-Dawley , Interleukin-6/metabolism , Pelvic Floor , Disease Models, Animal , Bone Marrow Cells/metabolism , Vagina/pathology , Mesenchymal Stem Cell Transplantation/methods , Pelvic Floor Disorders/therapy , Middle Aged
14.
Front Pharmacol ; 15: 1405252, 2024.
Article in English | MEDLINE | ID: mdl-38910887

ABSTRACT

Introduction: Traditional Chinese medicine (TCM) is gaining worldwide popularity as a complementary and alternative medicine. The isolation and characterization of active ingredients from TCM has become optional strategies for drug development. In order to overcome the inherent limitations of these natural products such as poor water solubility and low bioavailability, the combination of nanotechnology with TCM has been explored. Taking advantage of the benefits offered by the nanoscale, various drug delivery systems have been designed to enhance the efficacy of TCM in the treatment and prevention of diseases. Methods: The manuscript aims to present years of research dedicated to the application of nanotechnology in the field of TCM. Results: The manuscript discusses the formulation, characteristics and therapeutic effects of nano-TCM. Additionally, the formation of carrier-free nanomedicines through self-assembly between active ingredients of TCM is summarized. Finally, the paper discusses the safety behind the application of nano-TCM and proposes potential research directions. Discussion: Despite some achievements, the safety of nano-TCM still need special attention. Furthermore, exploring the substance basis of TCM formulas from the perspective of nanotechnology may provide direction for elucidating the scientific intension of TCM formulas.

15.
J Integr Neurosci ; 23(6): 119, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38940087

ABSTRACT

OBJECTIVES: The majority of neuromyelitis optica spectrum disorders (NMOSD) patients are seropositive for aquaporin-4 (AQP4)-specific antibodies [also named neuromyelitis optica immunoglobulin G antibodies (NMO-IgG)]. Although NMO-IgG can induce pathological changes in the central nervous system (CNS), the immunological changes in the CNS and peripheral tissue remain largely unknown. We investigated whether NMO-IgG binds to tissue expressing AQP4 and induces immunological changes in the peripheral tissue and CNS. METHODS: C57BL/6 female mice were assigned into an NMOSD or control group. Pathological and immunological changes in peripheral tissue and CNS were measured by immunostaining and flow cytometry, respectively. Motor impairment was measured by open-field test. RESULTS: We found that NMO-IgG did bind to astrocyte- and AQP4-expressing peripheral tissue, but induced glial fibrillary acidic protein and AQP4 loss only in the CNS. NMO-IgG induced the activation of microglia and modulated microglia polarization toward the classical (M1) phenotype, but did not affect innate or adaptive immune cells in the peripheral immune system, such as macrophages, neutrophils, Th17/Th1, or IL-10-producing B cells. In addition, NMOSD mice showed significantly less total distance traveled and higher immobility time in the open field. CONCLUSIONS: We found that injection of human NMO-IgG led to astrocytopathic lesions with microglial activation in the CNS. However, there were no significant pathological or immunological changes in the peripheral tissues.


Subject(s)
Aquaporin 4 , Immunoglobulin G , Mice, Inbred C57BL , Neuromyelitis Optica , Animals , Neuromyelitis Optica/immunology , Neuromyelitis Optica/pathology , Aquaporin 4/immunology , Female , Humans , Mice , Disease Models, Animal , Microglia/metabolism , Microglia/immunology , Microglia/drug effects , Autoantibodies/immunology , Astrocytes/immunology , Astrocytes/metabolism , Astrocytes/pathology , Glial Fibrillary Acidic Protein/metabolism , Glial Fibrillary Acidic Protein/immunology , Central Nervous System/immunology , Central Nervous System/metabolism , Central Nervous System/pathology
16.
CNS Neurosci Ther ; 30(5): e14736, 2024 05.
Article in English | MEDLINE | ID: mdl-38739106

ABSTRACT

AIMS: Multiple sclerosis (MS) is a neuroinflammatory demyelinating disease. Microglia are reportedly involved in the pathogenesis of MS. However, the key molecules that control the inflammatory activity of microglia in MS have not been identified. METHODS: Experimental autoimmune encephalomyelitis (EAE) mice were randomized into CD22 blockade and control groups. The expression levels of microglial CD22 were measured by flow cytometry, qRT-PCR, and immunofluorescence. The effects of CD22 blockade were examined via in vitro and in vivo studies. RESULTS: We detected increased expression of microglial CD22 in EAE mice. In addition, an in vitro study revealed that lipopolysaccharide upregulated the expression of CD22 in microglia and that CD22 blockade modulated microglial polarization. Moreover, an in vivo study demonstrated that CD22 blockade aggravated EAE in mice and promoted microglial M1 polarization. CONCLUSION: Collectively, our study indicates that CD22 may be protective against EAE and may play a critical role in the maintenance of immune homeostasis in EAE mice.


Subject(s)
Encephalomyelitis, Autoimmune, Experimental , Microglia , Sialic Acid Binding Ig-like Lectin 2 , Animals , Female , Mice , Cell Polarity/drug effects , Cell Polarity/physiology , Cells, Cultured , Encephalomyelitis, Autoimmune, Experimental/chemically induced , Encephalomyelitis, Autoimmune, Experimental/immunology , Encephalomyelitis, Autoimmune, Experimental/pathology , Lipopolysaccharides/pharmacology , Lipopolysaccharides/toxicity , Mice, Inbred C57BL , Microglia/drug effects , Microglia/metabolism , Myelin-Oligodendrocyte Glycoprotein/toxicity , Myelin-Oligodendrocyte Glycoprotein/immunology
17.
Anal Chem ; 96(22): 9078-9087, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38770734

ABSTRACT

As an important disease biomarker, the development of sensitive detection strategies for miRNA, especially intracellular miRNA imaging strategies, is helpful for early diagnosis of diseases, pathological research, and drug development. Hybridization chain reaction (HCR) is widely used for miRNA imaging analysis because of its high specificity and lack of biological enzymes. However, the classic HCR reaction exhibits linear amplification with low efficiency, limiting its use for the rapid analysis of trace miRNA in living cells. To address this problem, we proposed a toehold-mediated exponential HCR (TEHCR) to achieve highly sensitive and efficient imaging of miRNA in living cells using ß-FeOOH nanoparticles as transfection vectors. The detection limit of TEHCR was as low as 92.7 fM, which was 8.8 × 103 times lower compared to traditional HCR, and it can effectively distinguish single-base mismatch with high specificity. The TEHCR can also effectively distinguish the different expression levels of miRNA in cancer cells and normal cells. Furthermore, TEHCR can be used to construct OR logic gates for dual miRNA analysis without the need for additional probes, demonstrating high flexibility. This method is expected to play an important role in clinical miRNA-related disease diagnosis and drug development as well as to promote the development of logic gates.


Subject(s)
MicroRNAs , Nucleic Acid Hybridization , MicroRNAs/analysis , MicroRNAs/metabolism , Humans , Limit of Detection , Nucleic Acid Amplification Techniques/methods , Ferric Compounds/chemistry
18.
J Neurol ; 2024 May 17.
Article in English | MEDLINE | ID: mdl-38758281

ABSTRACT

OBJECTIVES: CLCN4 variations have recently been identified as a genetic cause of X-linked neurodevelopmental disorders. This study aims to broaden the phenotypic spectrum of CLCN4-related condition and correlate it with functional consequences of CLCN4 variants. METHODS: We described 13 individuals with CLCN4-related neurodevelopmental disorder. We analyzed the functional consequence of the unreported variants using heterologous expression, biochemistry, confocal fluorescent microscopy, patch-clamp electrophysiology, and minigene splicing assay. RESULTS: We identified five novel (p.R41W, p.L348V, p.G480R, p.R603W, c.1576 + 5G > A) and three known (p.T203I, p.V275M, p.A555V) pathogenic CLCN4 variants in 13 Chinese patients. The p.V275M variant is found at high frequency and seen in four unrelated individuals. All had global developmental delay (GDD)/intellectual disability (ID). Seizures were present in eight individuals, and 62.5% of them developed refractory epilepsy. Five individuals without seizures showed moderate to severe GDD/ID. Developmental delay precedes seizure onset in most patients. The variants p.R41W, p.L348V, and p.R603W compromise the anion/exchange function of ClC-4. p.R41W partially impairs ClC-3/ClC-4 association. p.G480R reduces ClC-4 expression levels and impairs the heterodimerization with ClC-3. The c.1576 + 5G > A variant causes 22 bp deletion of exon 10. CONCLUSIONS: We further define and broaden the clinical and mutational spectrum of CLCN4-related neurodevelopmental conditions. The p.V275M variant may be a potential hotspot CLCN4 variant in Chinese patients. The five novel variants cause loss of function of ClC-4. Transport dysfunction, protein instability, intracellular trafficking defect, or failure of ClC-4 to oligomerize may contribute to the pathophysiological events leading to CLCN4-related neurodevelopmental disorder.

19.
Front Immunol ; 15: 1333923, 2024.
Article in English | MEDLINE | ID: mdl-38736884

ABSTRACT

Backgroud: Although recent studies have reported the regulation of the immune response in hepatocellular carcinoma (HCC) through DNA methylation, the comprehensive impact methylation modifications on tumor microenvironment characteristics and immunotherapy efficacy has not been fully elucidated. Methods: In this research, we conducted a comprehensive assessment of the patterns of DNA methylation regulators and the profiles of the tumor microenvironment (TME) in HCC, focusing on 21 specific DNA methylation regulators. We subsequently developed a unique scoring system, a DNA methylation score (DMscore), to assess the individual DNA methylation modifications among the three distinct methylation patterns for differentially expressed genes (DEGs). Results: Three distinct methylation modification patterns were identified with distinct TME infiltration characteristics. We demonstrated that the DMscore could predict patient subtype, TME infiltration, and patient prognosis. A low DMscore, characterized by an elevated tumor mutation burden (TMB), hepatitis B virus (HBV)/hepatitis C virus (HCV) infection, and immune activation, indicates an inflamed tumor microenvironment phenotype with a 5-year survival rate of 7.8%. Moreover, a low DMscore appeared to increase the efficacy of immunotherapy in the anti-CTLA-4/PD-1/PD-L1 cohort. Conclusions: In brief, this research has enhanced our understanding of the correlation between modifications in DNA methylation patterns and the profile of the tumor microenvironment in individuals diagnosed with HCC. The DMscore may serve as an alternative biomarker for survival and efficacy of immunotherapy in patients with HCC.


Subject(s)
Biomarkers, Tumor , Carcinoma, Hepatocellular , DNA Methylation , Gene Expression Regulation, Neoplastic , Liver Neoplasms , Tumor Microenvironment , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/immunology , Carcinoma, Hepatocellular/pathology , Humans , Tumor Microenvironment/immunology , Tumor Microenvironment/genetics , Liver Neoplasms/genetics , Liver Neoplasms/immunology , Liver Neoplasms/pathology , Liver Neoplasms/mortality , Biomarkers, Tumor/genetics , Prognosis , Gene Expression Profiling
20.
Mediators Inflamm ; 2024: 9986187, 2024.
Article in English | MEDLINE | ID: mdl-38716374

ABSTRACT

Objective: Fetal growth restriction (FGR) is a significant contributor to negative pregnancy and postnatal developmental outcomes. Currently, the exact pathological mechanism of FGR remains unknown. This study aims to utilize multiomics sequencing technology to investigate potential relationships among mRNA, gut microbiota, and metabolism in order to establish a theoretical foundation for diagnosing and understanding the molecular mechanisms underlying FGR. Methods: In this study, 11 healthy pregnant women and nine pregnant women with FGR were divided into Control group and FGR group based on the health status. Umbilical cord blood, maternal serum, feces, and placental tissue samples were collected during delivery. RNA sequencing, 16S rRNA sequencing, and metabolomics methods were applied to analyze changes in umbilical cord blood circulating mRNA, fecal microbiota, and metabolites. RT-qPCR, ELISA, or western blot were used to detect the expression of top 5 differential circulating mRNA in neonatal cord blood, maternal serum, or placental tissue samples. Correlation between differential circulating mRNA, microbiota, and metabolites was analyzed by the Spearman coefficient. Results: The top 5 mRNA genes in FGR were altered with the downregulation of TRIM34, DEFA3, DEFA1B, DEFA1, and QPC, and the upregulation of CHPT1, SMOX, FAM83A, GDF15, and NAPG in newborn umbilical cord blood, maternal serum, and placental tissue. The abundance of Bacteroides, Akkermansia, Eubacterium_coprostanoligenes_group, Phascolarctobacterium, Parasutterella, Odoribacter, Lachnospiraceae_UCG_010, and Dielma were significantly enriched in the FGR group. Metabolites such as aspartic acid, methionine, alanine, L-tryptophan, 3-methyl-2-oxovalerate, and ketoleucine showed notable functional alterations. Spearman correlation analysis indicated that metabolites like methionine and alanine, microbiota (Tyzzerella), and circulating mRNA (TRIM34, SMOX, FAM83A, NAPG) might play a role as mediators in the communication between the gut and circulatory system interaction in FGR. Conclusion: Metabolites (METHIONINE, alanine) as well as microbiota (Tyzzerella) and circulating mRNA (TRIM34, SMOX, FAM83A, NAPG) were possible mediators that communicated the interaction between the gut and circulatory systems in FGR.


Subject(s)
Fetal Growth Retardation , Gastrointestinal Microbiome , RNA, Messenger , Humans , Female , Fetal Growth Retardation/metabolism , Fetal Growth Retardation/microbiology , Pregnancy , RNA, Messenger/metabolism , Adult , Fetal Blood/metabolism , RNA, Ribosomal, 16S/genetics , Placenta/metabolism , Placenta/microbiology , Feces/microbiology , Infant, Newborn , Multiomics
SELECTION OF CITATIONS
SEARCH DETAIL
...