Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nano Lett ; 19(1): 449-454, 2019 01 09.
Article in English | MEDLINE | ID: mdl-30525676

ABSTRACT

Complex biological fluids without pretreatment, separation, or purification impose stringent limitations on the practical deployment of label-free plasmonic biosensors for advanced assays needed in point of care applications. In this work, we present an enzyme-free plasmonic neurotransmitter dopamine biosensor integrated with a microfluidic plasma separator. This integrated device allows the in-line separation of plasma directly from the bloodstream and channels it to the active detection area, where inorganic cerium oxide nanoparticles function as local selective dopamine binding sites through strong surface redox reaction. A thorough understanding and engineering of the nanoparticles is carried out to maximize its dopamine sensitivity and selectivity. We obtain detection of dopamine at 100 fM concentration in simulated body fluid and 1 nM directly from blood without any prior sample preparation. The detection selectivity is found to be at least five-times higher compared to the common interfering species. This demonstration shows the feasibility of the practical implementation of the proposed plasmonic system in detection of variety of biomarkers directly from the complex biological fluids.


Subject(s)
Biosensing Techniques , Dopamine/isolation & purification , Nanoparticles/chemistry , Neurotransmitter Agents/isolation & purification , 3,4-Dihydroxyphenylacetic Acid/chemistry , Cerium/chemistry , Dopamine/blood , Humans , Neurotransmitter Agents/blood
2.
Biosens Bioelectron ; 117: 40-46, 2018 Oct 15.
Article in English | MEDLINE | ID: mdl-29885578

ABSTRACT

An organic aptamer functionalized electrochemical transistor has been developed to detect the presence of epinephrine molecule which acts as an excitatory neurotransmitter. The abnormalities in the level of epinephrine are the direct symptoms of some diseases such as Takotsubo cardiomyopathy, myocardial infarction, arrhythmias and other heart related diseases. The present approach is based on immobilization of aptamers on the gate electrode which selectively binds to epinephrine with high affinity. The introduction of epinephrine in the system causes screening of negative charge of aptamers as well as the production of Faradaic current due to oxidation of epinephrine. The synergistic effect of these two events decreases the overall channel current which was seen in both transfer characteristics and current-time curve. Additional experiments against common interfering agents (dopamine, ascorbic acid, DOPAC etc) showed no decrease in the current which indicates high specificity of the sensor. Overall, the incorporation of aptamers in the transistor has allowed us to obtain a sensor exhibiting the lowest limit of detection for epinephrine (90 pM) till date which is comparable to normal physiological level. This approach provides a real-time detection of a large range of biomolecules and viral proteins in a time and cost-effective manner and has applications in point-of-care testing tool for several diagnostic applications.


Subject(s)
Aptamers, Nucleotide/chemistry , Biosensing Techniques/methods , Electrochemical Techniques , Epinephrine/analysis , Biosensing Techniques/instrumentation , Electrodes , Humans , Limit of Detection
SELECTION OF CITATIONS
SEARCH DETAIL
...