Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Int J Biol Macromol ; 163: 910-918, 2020 Nov 15.
Article in English | MEDLINE | ID: mdl-32629058

ABSTRACT

Structured lipids (SL) represent a new generation of lipids, considered bioactive compounds. Medium-chain, oleic (18:1n-9), and medium-chain fatty acid (MCFA) structured lipids (MOM-SL) were produced by acidolysis reaction in solvent-free medium with capric (10:0) and lauric (12:0) free fatty acids (FFAs) and triolein or olive oil, using Yarrowia lipolytica lipase as biocatalyst. MCFAs were rapidly incorporated into sn-1,3 SL in acidolysis reactions with triolein and olive oil, up until 30% of incorporation efficiency of capric and lauric acids in SLs. The kinetics of MCFA incorporation in MOM-SL was influenced by the FFA:TAG molar ratio, and for reactions between triolein and lauric acid, increasing FFA:TAG from 2:1 to 4:1 enhanced MCFA incorporation in SL. Y. lipolytica lipase showed a strictly 1,3-regioselective profile in acidolysis reaction, confirmed by nuclear magnetic resonance spectroscopy. Immobilization of this lipase by microencapsulation in chitosan-alginate beads resulted in similar incorporation efficiency for lauric acid with olive oil TAG and this reaction could be performed for 5 cycles without catalytic activity loss. This lipase showed promising properties as a potential biocatalyst that may be effectively used in production of bioactive structured lipids, which might be applied for prevention of metabolic and inflammatory disorders related to obesity.


Subject(s)
Alginates/chemistry , Chitosan/chemistry , Enzymes, Immobilized , Lipase/chemistry , Lipids/chemical synthesis , Lipids/pharmacology , Yarrowia/enzymology , Biocatalysis , Chemistry Techniques, Synthetic , Dietary Supplements , Drug Compounding , Enzyme Activation , Esterification , Fatty Acids/chemistry , Hydrogen-Ion Concentration , Lipids/chemistry , Lipolysis , Microspheres , Olive Oil/chemistry
2.
Int J Biol Macromol ; 160: 889-902, 2020 Oct 01.
Article in English | MEDLINE | ID: mdl-32454106

ABSTRACT

Magnetic nanoparticles (Fe3O4) were used for physical adsorption of lipase from Yarrowia lipolytica IMUFRJ 50682. The optimal adsorption conditions were obtained as follows: enzyme/support 19.3 mg/g and temperature of 20 °C for standard protein. High immobilization efficiency of 99% was obtained for 4 mL of crude lipase extract (containing 0.315 mg protein/mL) and 0.02 g of magnetic nanoparticles and this biocatalyst was recycled 30 times with 70% of lipase activity in the end. Purified lipase extracts were also efficiently immobilized and ultrafiltered lipase extract (ULE) and aqueous two-phase system lipase extract (ATPS_LE) when immobilized revealed higher hydrolytic activity in relation to CLE (2.8 and 4.0 times higher, respectively). Broad pH tolerance and high thermostability could be achieved by immobilization on magnetic nanoparticles, with 40% improvement in thermodynamic parameters at 60 °C. Kinetic parameters Vmax and Km were also better for ULE (Vmax: 2.3 times higher; Km 43% reduction) and ATPS_LE (Vmax: 3.0 times higher; Km: 38% reduction) immobilized on magnetic nanoparticles in relation to CLE. These results showed that the immobilization of lipase onto magnetic nanoparticles by physical adsorption is an efficient and simple way to obtain a great catalyst.


Subject(s)
Enzymes, Immobilized/chemistry , Lipase/chemistry , Magnetite Nanoparticles/chemistry , Yarrowia/enzymology , Adsorption , Biocatalysis , Enzyme Stability , Enzymes, Immobilized/metabolism , Hydrogen-Ion Concentration , Hydrolysis , Lipase/isolation & purification , Lipase/metabolism , Proteins/chemistry , Temperature , Thermodynamics
SELECTION OF CITATIONS
SEARCH DETAIL