Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Plant Physiol ; 127(3): 1193-203, 2001 Nov.
Article in English | MEDLINE | ID: mdl-11706198

ABSTRACT

The dynamics of polyribosome abundance were studied in gravistimulated maize (Zea mays) stem pulvini. During the initial 15 min of gravistimulation, the amount of large polyribosomes transiently decreased. The transient decrease in polyribosome levels was accompanied by a transient decrease in polyribosome-associated mRNA. After 30 min of gravistimulation, the levels of polyribosomes and the amount of polyribosome-associated mRNA gradually increased over 24 h up to 3- to 4-fold of the initial value. Within 15 min of gravistimulation, total levels of transcripts coding for calreticulin and calmodulin were elevated 5-fold in maize pulvinus total RNA. Transcripts coding for calreticulin and calmodulin were recruited into polyribosomes within 15 min of gravistimulation. Over 4 h of gravistimulation, a gradual increase in the association of calreticulin and calmodulin transcripts with polyribosomes was seen predominantly in the lower one-half of the maize pulvinus; the association of transcripts for vacuolar invertase with polyribosomes did not change over this period. Our results suggest that within 15 min of gravistimulation, the translation of the majority of transcripts associated with polyribosomes decreased, resembling a general stress response. Recruitment of calreticulin and calmodulin transcripts into polyribosomes occurred predominantly in the lower pulvinus one-half during the first 4 h when the presentation time for gravistimulation in the maize pulvinus is not yet complete.


Subject(s)
Calcium-Binding Proteins/metabolism , Calmodulin/metabolism , Polyribosomes/metabolism , Pulvinus/metabolism , Ribonucleoproteins/metabolism , Zea mays/metabolism , Biological Transport , Calcium-Binding Proteins/genetics , Calmodulin/genetics , Calreticulin , Glycoside Hydrolases/metabolism , Gravitropism , Plant Stems/genetics , Plant Stems/metabolism , Pulvinus/genetics , RNA, Messenger , RNA, Plant , Ribonucleoproteins/genetics , Time Factors , Transcription, Genetic , Vacuoles/metabolism , Zea mays/genetics , beta-Fructofuranosidase
2.
Plant Physiol ; 126(4): 1507-18, 2001 Aug.
Article in English | MEDLINE | ID: mdl-11500549

ABSTRACT

During the stationary phase of growth, after 7 to 12 d in culture, the levels of phosphatidylinositol 4,5-bisphosphate (PtdInsP(2)) decreased by 75% in plasma membranes of the red alga Galdieria sulphuraria. Concomitant with the decrease in PtdInsP(2) levels in plasma membranes, there was an increase in PtdInsP(2) in microsomes, suggesting that the levels of plasma membrane PtdInsP(2) are regulated differentially. The decline of PtdInsP(2) in plasma membranes was accompanied by a 70% decrease in the specific activity of PtdInsP kinase and by reduced levels of protein cross-reacting with antisera against a conserved PtdInsP kinase domain. Upon osmotic stimulation, the loss of PtdInsP(2)from the plasma membrane increased from 10% in 7-d-old cells to 60% in 12-d-old cells, although the levels of inositol 1,4,5-trisphosphate (InsP(3)) produced in whole cells were roughly equal at both times. When cells with low plasma membrane PtdInsP(2) levels were osmotically stimulated, a mild osmotic stress (12.5 mM KCl) activated PtdInsP kinase prior to InsP(3) production, whereas in cells with high plasma membrane PtdInsP(2), more severe stress (250 mM KCl) was required to induce an increase in PtdInsP kinase activity. The differential regulation of a plasma membrane signaling pool of PtdInsP(2) is discussed with regard to the implications for understanding the responsive state of cells.


Subject(s)
Cell Membrane/metabolism , Phosphatidylinositol 4,5-Diphosphate/metabolism , Rhodophyta/metabolism , Blotting, Western , Cells, Cultured , Inositol 1,4,5-Trisphosphate/metabolism , Microsomes/metabolism , Minor Histocompatibility Antigens , Osmotic Pressure , Phospholipids/analysis , Phosphotransferases (Alcohol Group Acceptor)/metabolism , Signal Transduction , Time
3.
Plant Physiol ; 125(3): 1499-507, 2001 Mar.
Article in English | MEDLINE | ID: mdl-11244128

ABSTRACT

Plants sense positional changes relative to the gravity vector. To date, the signaling processes by which the perception of a gravistimulus is linked to the initiation of differential growth are poorly defined. We have investigated the role of inositol 1,4,5-trisphosphate (InsP(3)) in the gravitropic response of oat (Avena sativa) shoot pulvini. Within 15 s of gravistimulation, InsP(3) levels increased 3-fold over vertical controls in upper and lower pulvinus halves and fluctuated in both pulvinus halves over the first minutes. Between 10 and 30 min of gravistimulation, InsP(3) levels in the lower pulvinus half increased 3-fold over the upper. Changes in InsP(3) were confined to the pulvinus and were not detected in internodal tissue, highlighting the importance of the pulvinus for both graviperception and response. Inhibition of phospholipase C blocked the long-term increase in InsP(3), and reduced gravitropic bending by 65%. Short-term changes in InsP(3) were unimpaired by the inhibitor. Gravitropic bending of oat plants is inhibited at 4 degrees C; however, the plants retain the information of a positional change and respond at room temperature. Both short- and long-term changes in InsP(3) were present at 4 degrees C. We propose a role for InsP(3) in the establishment of tissue polarity during the gravitropic response of oat pulvini. InsP(3) may be involved in the retention of cold-perceived gravistimulation by providing positional information in the pulvini prior to the redistribution of auxin.


Subject(s)
Avena/physiology , Cold Temperature , Gravitropism , Inositol 1,4,5-Trisphosphate/physiology , Signal Transduction/physiology , Enzyme Inhibitors/pharmacology , Estrenes/pharmacology , Plant Shoots/physiology , Pyrrolidinones/pharmacology , Type C Phospholipases/antagonists & inhibitors
5.
Trends Plant Sci ; 5(6): 252-8, 2000 Jun.
Article in English | MEDLINE | ID: mdl-10838616

ABSTRACT

Living organisms have evolved to contain a wide variety of receptors and signaling pathways that are essential for their survival in a changing environment. Of these, the phosphoinositide pathway is one of the best conserved. The ability of the phosphoinositides to permeate both hydrophobic and hydrophilic environments, and their diverse functions within cells have contributed to their persistence in nature. In eukaryotes, phosphoinositides are essential metabolites as well as labile messengers that regulate cellular physiology while traveling within and between cells. The stereospecificity of the six hydroxyls on the inositol ring provides the basis for the functional diversity of the phosphorylated isomers that, in turn, generate a selective means of intracellular and intercellular communication for coordinating cell growth. Although such complexity presents a difficult challenge for bench scientists, it is ideal for the regulation of cellular functions in living organisms.


Subject(s)
Inositol Phosphates/metabolism , Inositol/metabolism , Phosphatidylinositols/metabolism , Plant Development , Inositol 1,4,5-Trisphosphate/metabolism , Signal Transduction , Stereoisomerism
6.
Proc Natl Acad Sci U S A ; 96(10): 5838-43, 1999 May 11.
Article in English | MEDLINE | ID: mdl-10318971

ABSTRACT

The internodal maize pulvinus responds to gravistimulation with differential cell elongation on the lower side. As the site of both graviperception and response, the pulvinus is an ideal system to study how organisms sense changes in orientation. We observed a transient 5-fold increase in inositol 1,4,5-trisphosphate (IP3) within 10 s of gravistimulation in the lower half of the pulvinus, indicating that the positional change was sensed immediately. Over the first 30 min, rapid IP3 fluctuations were observed between the upper and lower halves. Maize plants require a presentation time of between 2 and 4 h before the cells on the lower side of the pulvinus are committed to elongation. After 2 h of gravistimulation, the lower half consistently had higher IP3, and IP3 levels on the lower side continued to increase up to approximately 5-fold over basal levels before visible growth. As bending became visible after 8-10 h, IP3 levels returned to basal values. Additionally, phosphatidylinositol 4-phosphate 5-kinase activity in the lower pulvinus half increased transiently within 10 min of gravistimulation, suggesting that the increased IP3 production was accompanied by an up-regulation of phosphatidylinositol 4, 5-bisphosphate biosynthesis. Neither IP3 levels nor phosphatidylinositol 4-phosphate 5-kinase activity changed in pulvini halves from vertical control plants. Our data indicate the involvement of IP3 and inositol phospholipids in both short- and long-term responses to gravistimulation. As a diffusible second messenger, IP3 provides a mechanism to transmit and amplify the signal from the perceiving to the responding cells in the pulvinus, coordinating a synchronized growth response.


Subject(s)
Inositol 1,4,5-Trisphosphate/metabolism , Zea mays/metabolism , Cell Membrane/metabolism , Cell Size , Gravitation , Inositol Polyphosphate 5-Phosphatases , Phosphatidylinositol 4,5-Diphosphate/metabolism , Phosphoric Monoester Hydrolases/metabolism , Phosphotransferases (Alcohol Group Acceptor)/metabolism , Pulvinus/growth & development , Second Messenger Systems , Time Factors
7.
J Biol Chem ; 273(35): 22761-7, 1998 Aug 28.
Article in English | MEDLINE | ID: mdl-9712908

ABSTRACT

Pleckstrin homology (PH) domains are found in many proteins involved in signal transduction, including the family of large molecular mass phosphatidylinositol (PI) 4-kinases. Although the exact function of these newly discovered domains is unknown, it is recognized that they may influence enzyme regulation by binding different ligands. In this study, the recombinant PI 4-kinase PH domain was explored for its ability to bind to different phospholipids. First, we isolated partial cDNAs of the >7-kilobase transcripts of PI 4-kinases from carrot (DcPI4Kalpha) and Arabidopsis (AtPI4Kalpha). The deduced primary sequences were 41% identical and 68% similar to rat and human PI 4-kinases and contained the telltale lipid kinase unique domain, PH domain, and catalytic domain. Antibodies raised against the expressed lipid kinase unique, PH, and catalytic domains identified a polypeptide of 205 kDa in Arabidopsis microsomes and an F-actin-enriched fraction from carrot cells. The 205-kDa immunoaffinity-purified Arabidopsis protein had PI 4-kinase activity. We have used the expressed PH domain to characterize lipid binding properties. The recombinant PH domain selectively bound to phosphatidylinositol 4-monophosphate (PI-4-P), phosphatidylinositol 4,5-bisphosphate (PI-4,5-P2), and phosphatidic acid and did not bind to the 3-phosphoinositides. The PH domain had the highest affinity for PI-4-P, the product of the reaction. Consideration is given to the potential impact that this has on cytoskeletal organization and the PI signaling pathway in cells that have a high PI-4-P/PI-4,5-P2 ratio.


Subject(s)
1-Phosphatidylinositol 4-Kinase/metabolism , Blood Proteins/metabolism , Phosphatidylinositol Phosphates/metabolism , Phosphoproteins , 1-Phosphatidylinositol 4-Kinase/chemistry , 1-Phosphatidylinositol 4-Kinase/genetics , Amino Acid Sequence , Animals , Arabidopsis/enzymology , Base Sequence , Blood Proteins/genetics , Blotting, Western , Cells, Cultured , Cloning, Molecular , Daucus carota/enzymology , Humans , Molecular Sequence Data , Molecular Weight , Protein Binding , Rats , Recombinant Proteins/metabolism , Sequence Homology, Amino Acid
8.
Plant Mol Biol ; 29(2): 227-44, 1995 Oct.
Article in English | MEDLINE | ID: mdl-7579175

ABSTRACT

To understand the subcellular roles and the regulation of vacuolar H(+)-ATPases, we have begun to identify the genes encoding the major subunits and to determine their patterns of expression in Arabidopsis thaliana. Two distinct cDNAs (AVA-P1 and AVA-P2) and one genomic sequence (AVA-P3) encoding the 16 kDa subunit have been isolated. The 16 kDa proteolipid is a major component of the membrane integral sector that forms the proton conductance pathway and is required for assembly of the V-ATPase complex. Interestingly, the open reading frame of one full-length cDNA (AVA-P1) and a genomic sequence (AVA-P3) encoded an identical polypeptide of 164 amino acids with a molecular mass of 16,570. The deduced amino acid sequences of the two cDNAs were nearly identical (99%) and hydropathy plots suggested a molecule with four membrane-spanning domains characteristic of V-ATPase proteolipids. The three genes differed mainly in their codon usage and in their 3'-untranslated regions. The coding region of the genomic sequence, AVA-P3, was interrupted by two introns located at the codons for Cys-26 and Arg-121. The presence of additional 16 kDa proteolipid genes was suggested from several polymerase chain reaction (PCR)-amplified fragments that differed from one another in the size of the second intron. PCR 1 had an intron of ca. 800 bp and its identity as AVA-P4, a fourth member of the gene family, was confirmed from sequence analyses of an EST cDNA. The mRNAs of three genes (AVA-P1, AVA-P2 and AVA-P3) were detected in Arabidopsis leaf, root, flower and silique; yet expression of AVA-P1 and AVA-P2 was lower in roots. All three genes were expressed in light- or dark-grown seedlings; however mRNA levels of AVA-P2 were enhanced in etiolated plants. Arabidopsis thaliana, therefore, has at least four distinct genes encoding nearly identical 16 kDa proteolipids, and the enhanced expression of AVA-P2 transcript in etiolated seedlings suggests that an increase in V-ATPase could accompany cell expansion.


Subject(s)
Arabidopsis/genetics , Genes, Plant , Proteolipids/genetics , Proton-Translocating ATPases/genetics , Vacuoles/enzymology , Adaptation, Biological , Amino Acid Sequence , Arabidopsis/enzymology , Arabidopsis/radiation effects , Base Sequence , Blotting, Northern , Blotting, Southern , DNA, Complementary/genetics , Gene Expression , Gene Library , Genome, Plant , Light , Molecular Sequence Data , Multigene Family , Protein Conformation , Restriction Mapping , Sequence Analysis, DNA , Sequence Homology, Amino Acid , Sequence Homology, Nucleic Acid , Species Specificity , Tissue Distribution
9.
Plant Mol Biol ; 22(2): 215-25, 1993 May.
Article in English | MEDLINE | ID: mdl-8507825

ABSTRACT

Three new, unique cDNA sequences encoding isoforms of calmodulin (CaM) were isolated from an Arabidopsis cDNA library cloned in lambda gt10. These sequences (ACaM-4, -5, and -6) represent members of the Arabidopsis CaM gene family distinct from the three DNA sequences previously reported. ACaM-4 and -6 encode full-length copies of CaM mRNAs of ca. 0.75 kb. The ACaM-5 sequence encodes a partial length copy of CaM mRNA that is lacking sequences encoding the amino-terminal 10 amino acids of mature CaM and the initiator methionine. The derived amino acid sequence of ACaM-5 is identical to the sequences encoded by two of the previously characterized ACaM cDNAs, and is identical to TCH-1 mRNA, whose accumulation was increased by touch stimulation. The polypeptides encoded by ACaM-4 and -6 differ from that encoded by ACaM-5 by six and two amino acid substitutions, respectively. Most of the deduced amino acid sequence substitutions in the Arabidopsis CaM isoforms occurred in the fourth Ca(2+)-binding domain. Polymerase chain reaction amplification assays of ACaM-4, -5 and -6 mRNA sequences indicated that each accumulated in Arabidopsis leaf RNA fractions, but only ACaM-4 and -5 mRNAs were detected in silique total RNA. The six different CaM cDNA sequences each hybridize with unique EcoRI restriction fragments in genomic Southern blots of Arabidopsis DNA, indicating that these sequences were derived from distinct structural genes. Our results suggest that CaM isoforms in Arabidopsis may have evolved to optimize the interaction of this Ca(2+)-receptor protein with specific subsets of response elements.


Subject(s)
Arabidopsis/genetics , Calmodulin/genetics , Genes, Plant/genetics , Multigene Family/genetics , RNA, Messenger/genetics , Amino Acid Sequence , Base Sequence , Genetic Variation , Genome , Molecular Sequence Data , RNA, Messenger/biosynthesis , Sequence Homology, Amino Acid , Sequence Homology, Nucleic Acid
10.
Plant Physiol ; 100(2): 812-9, 1992 Oct.
Article in English | MEDLINE | ID: mdl-16653062

ABSTRACT

The expression of calmodulin mRNA and protein were measured during a growth cycle of carrot (Daucus carota L.) cells grown in suspension culture. A full-length carrot calmodulin cDNA clone isolated from a lambdagt10 library was used to measure steady-state calmodulin mRNA levels. During the exponential phase of culture growth when mitotic activity and oxidative respiration rates were maximal, calmodulin mRNA levels were 4- to 5-fold higher than they were during the later stages of culture growth, when respiration rates were lower and growth was primarily by cell expansion. Net calmodulin polypeptide synthesis, as measured by pulse-labeling in vivo with [(35)S]methionine, paralleled the changes in calmodulin steady-state mRNA level during culture growth. As a consequence, net calmodulin polypeptide synthesis declined 5- to 10-fold during the later stages of culture growth. The qualitative spectrum of polypeptides synthesized and accumulated by the carrot cells during the course of a culture cycle, however, remained largely unchanged. Calmodulin polypeptide levels, in contrast to its net synthesis, remained relatively constant during the exponential phases of the culture growth cycle and increased during the later stages of culture growth. Our data are consistent with increased calmodulin polypeptide turnover associated with periods of rapid cell proliferation and high levels of respiration.

11.
Plant Mol Biol ; 19(4): 649-64, 1992 Jul.
Article in English | MEDLINE | ID: mdl-1627778

ABSTRACT

Genomic and cDNA sequences encoding a calmodulin (CaM) gene from Arabidopsis (ACaM-3) have been isolated and characterized. ACaM-3 represents a sequence distinct from two previously isolated Arabidopsis CaM cDNA clones. A 2.3 kb Eco RI restriction fragment was sequenced and found to encode a complete CaM-coding sequence interrupted by a single 491 bp intron, together with 750 bp and 600 bp of 5' and 3' flanking sequences, respectively. The polypeptide encoded by ACaM-3 is identical to that encoded by ACaM-2 and it differs from the one encoded by ACaM-1 by four of 148 residues. The putative promoter of ACaM-3 was atypical of CaM genes previously isolated from animals in that it contained consensus TATA and CAAT box sequences and lacked GC-rich regions. Two DNA sequence elements closely resembling cyclic AMP regulatory elements, which have been identified in animal CaM genes, were located in the 5' flanking region of ACaM-3. Northern blot and polymerase chain reaction amplification assays confirmed that each of the three ACaM mRNAs were expressed in similar but distinct patterns in different organs. ACaM-1 mRNA was the only species detectable in root RNA fractions, and ACaM-3 mRNA could not be detected in floral stalks. Accumulation of the three CaM mRNAs in leaves was induced by a touch stimulus, but the kinetics and extent of the induction varied among the three mRNA species. Run-on transcription assays indicated that a portion of the differences in accumulation of ACaM-1, 2, and 3 mRNAs in leaves and siliques was attributable to differences in their net rates of transcription.


Subject(s)
Calmodulin/genetics , Gene Expression Regulation , Plants/genetics , Amino Acid Sequence , Base Sequence , Calmodulin/metabolism , DNA , Handling, Psychological , Introns , Molecular Sequence Data , Nucleic Acid Hybridization , Polymerase Chain Reaction , Promoter Regions, Genetic , RNA, Messenger/metabolism , Restriction Mapping , Sequence Homology, Nucleic Acid , Transcription, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL