Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
Add more filters










Publication year range
1.
J Med Chem ; 65(14): 9662-9677, 2022 07 28.
Article in English | MEDLINE | ID: mdl-35838760

ABSTRACT

While epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) have changed the treatment landscape for EGFR mutant (L858R and ex19del)-driven non-small-cell lung cancer (NSCLC), most patients will eventually develop resistance to TKIs. In the case of first- and second-generation TKIs, up to 60% of patients will develop an EGFR T790M mutation, while third-generation irreversible TKIs, like osimertinib, lead to C797S as the primary on-target resistance mutation. The development of reversible inhibitors of these resistance mutants is often hampered by poor selectivity against wild-type EGFR, resulting in potentially dose-limiting toxicities and a sub-optimal profile for use in combinations. BLU-945 (compound 30) is a potent, reversible, wild-type-sparing inhibitor of EGFR+/T790M and EGFR+/T790M/C797S resistance mutants that maintains activity against the sensitizing mutations, especially L858R. Pre-clinical efficacy and safety studies supported progression of BLU-945 into clinical studies, and it is currently in phase 1/2 clinical trials for treatment-resistant EGFR-driven NSCLC.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , Drug Resistance, Neoplasm , ErbB Receptors , Humans , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Mutation , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use
2.
Bioorg Med Chem Lett ; 27(17): 3987-3991, 2017 09 01.
Article in English | MEDLINE | ID: mdl-28778468

ABSTRACT

To develop agents for the treatment of infections caused by Mycobacterium tuberculosis, a novel phenotypic screen was undertaken that identified a series of 2-N-aryl thiazole-based inhibitors of intracellular Mycobacterium tuberculosis. Analogs were optimized to improve potency against an attenuated BSL2 H37Ra laboratory strain cultivated in human macrophage cells in vitro. The insertion of a carboxylic acid functionality resulted in compounds that retained potency and greatly improved microsomal stability. However, the strong potency trends we observed in the attenuated H37Ra strain were inconsistent with the potency observed for virulent strains in vitro and in vivo.


Subject(s)
Anti-Bacterial Agents/pharmacology , Mycobacterium tuberculosis/drug effects , Thiazoles/pharmacology , Animals , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/chemistry , Dose-Response Relationship, Drug , Humans , Macrophages/drug effects , Macrophages/microbiology , Mice , Microbial Sensitivity Tests , Molecular Structure , Structure-Activity Relationship , Thiazoles/chemical synthesis , Thiazoles/chemistry
3.
ACS Med Chem Lett ; 8(2): 261-265, 2017 Feb 09.
Article in English | MEDLINE | ID: mdl-28197323

ABSTRACT

JNJ-63623872 (2) is a first-in-class, orally bioavailable compound that offers significant potential for the treatment of pandemic and seasonal influenza. Early lead optimization efforts in our 7-azaindole series focused on 1,3-diaminocyclohexyl amide and urea substitutions on the pyrimidine-7-azaindole motif. In this work, we explored two strategies to eliminate observed aldehyde oxidase (AO)-mediated metabolism at the 2-position of these 7-azaindole analogues. Substitution at the 2-position of the azaindole ring generated somewhat less potent analogues, but reduced AO-mediated metabolism. Incorporation of a ring nitrogen generated 7-azaindazole analogues that were equipotent to the parent 2-H-7-azaindole, but surprisingly, did not appear to improve AO-mediated metabolism. Overall, we identified multiple 2-substituted 7-azaindole analogues with enhanced AO stability and we present data for one such compound (12) that demonstrate a favorable oral pharmacokinetic profile in rodents. These analogues have the potential to be further developed as anti-influenza agents for the treatment of influenza.

4.
ACS Med Chem Lett ; 8(2): 256-260, 2017 Feb 09.
Article in English | MEDLINE | ID: mdl-28197322

ABSTRACT

In our efforts to develop novel small-molecule inhibitors for the treatment of influenza, we utilized molecular modeling and the X-ray crystal structure of the PB2 subunit of the influenza polymerase to optimize a series of acyclic ß-amino acid inhibitors, highlighted by compound 4. Compound 4 showed good oral exposure in both rat and mouse. More importantly, it showed strong potency versus multiple influenza-A strains, including pandemic 2009 H1N1 and avian H5N1 strains and showed a strong efficacy profile in a mouse influenza model even when treatment was initiated 48 h after infection. Compound 4 offers good oral bioavailability with great potential for the treatment of both pandemic and seasonal influenza.

5.
J Med Chem ; 59(15): 7138-51, 2016 08 11.
Article in English | MEDLINE | ID: mdl-27385654

ABSTRACT

There are currently no treatments for life-threatening infections caused by human polyomaviruses JCV and BKV. We therefore report herein the first crystal structure of the hexameric helicase of JCV large T antigen (apo) and its use to drive the structure-based design of dual JCV and BKV ATP-competitive inhibitors. The crystal structures obtained by soaking our early inhibitors into the JCV helicase allowed us to rapidly improve the biochemical activity of our inhibitors from 18 µM for the early 6-(2-methoxyphenyl)- and the 6-(2-ethoxyphenyl)-[1,2,4]triazolo[3,4-b][1,3,4]thiadiazole hits 1a and 1b to 0.6 µM for triazolopyridine 12i. In addition, we were able to demonstrate measurable antiviral activity in Vero cells for our thiazolopyridine series in the absence of marked cytotoxicity, thus confirming the usefulness of this approach.


Subject(s)
BK Virus/enzymology , DNA Helicases/antagonists & inhibitors , Drug Discovery , Enzyme Inhibitors/pharmacology , JC Virus/enzymology , DNA Helicases/metabolism , Dose-Response Relationship, Drug , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , Models, Molecular , Molecular Structure , Structure-Activity Relationship
6.
Bioorg Med Chem Lett ; 25(9): 1990-4, 2015 May 01.
Article in English | MEDLINE | ID: mdl-25827523

ABSTRACT

VX-787 is a first in class, orally bioavailable compound that offers unparalleled potential for the treatment of pandemic and seasonal influenza. As a part of our routine SAR exploration, carboxylic acid isosteres of VX-787 were prepared and tested against influenza A. It was found that the negative charge is important for maintaining potency and selectivity relative to kinase targets. Neutral carboxylic acid replacements generally resulted in compounds that were significantly less potent and less selective relative to the charged species.


Subject(s)
Antiviral Agents/pharmacology , Aza Compounds/pharmacology , Indoles/pharmacology , Influenza A virus/drug effects , Protein Kinase Inhibitors/pharmacology , Viral Proteins/antagonists & inhibitors , Antiviral Agents/chemical synthesis , Antiviral Agents/chemistry , Aza Compounds/chemistry , Carboxylic Acids/chemistry , Dose-Response Relationship, Drug , Indoles/chemical synthesis , Indoles/chemistry , Influenza A virus/enzymology , Microbial Sensitivity Tests , Molecular Structure , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/chemistry , Pyridines , Pyrimidines , Pyrroles , Structure-Activity Relationship , Viral Proteins/metabolism
7.
PLoS Pathog ; 11(2): e1004679, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25675247

ABSTRACT

Mycobacterium tuberculosis (Mtb) relies on a specialized set of metabolic pathways to support growth in macrophages. By conducting an extensive, unbiased chemical screen to identify small molecules that inhibit Mtb metabolism within macrophages, we identified a significant number of novel compounds that limit Mtb growth in macrophages and in medium containing cholesterol as the principle carbon source. Based on this observation, we developed a chemical-rescue strategy to identify compounds that target metabolic enzymes involved in cholesterol metabolism. This approach identified two compounds that inhibit the HsaAB enzyme complex, which is required for complete degradation of the cholesterol A/B rings. The strategy also identified an inhibitor of PrpC, the 2-methylcitrate synthase, which is required for assimilation of cholesterol-derived propionyl-CoA into the TCA cycle. These chemical probes represent new classes of inhibitors with novel modes of action, and target metabolic pathways required to support growth of Mtb in its host cell. The screen also revealed a structurally-diverse set of compounds that target additional stage(s) of cholesterol utilization. Mutants resistant to this class of compounds are defective in the bacterial adenylate cyclase Rv1625/Cya. These data implicate cyclic-AMP (cAMP) in regulating cholesterol utilization in Mtb, and are consistent with published reports indicating that propionate metabolism is regulated by cAMP levels. Intriguingly, reversal of the cholesterol-dependent growth inhibition caused by this subset of compounds could be achieved by supplementing the media with acetate, but not with glucose, indicating that Mtb is subject to a unique form of metabolic constraint induced by the presence of cholesterol.


Subject(s)
Antitubercular Agents/pharmacology , Cholesterol/metabolism , Lipid Metabolism/drug effects , Macrophages/microbiology , Mycobacterium tuberculosis/metabolism , Adenylyl Cyclases/genetics , Animals , Bacterial Proteins/metabolism , Cell Line , Cyclic AMP/metabolism , Hydroxysteroid Dehydrogenases/antagonists & inhibitors , Intracellular Space , Macrophages/immunology , Mice , Microbial Sensitivity Tests , Mixed Function Oxygenases/antagonists & inhibitors , Mycobacterium tuberculosis/growth & development , Oxo-Acid-Lyases/antagonists & inhibitors , Small Molecule Libraries/pharmacology , Tuberculosis, Pulmonary/drug therapy
8.
Antimicrob Agents Chemother ; 59(3): 1455-65, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25534737

ABSTRACT

New drugs to treat drug-resistant tuberculosis are urgently needed. Extensively drug-resistant and probably the totally drug-resistant tuberculosis strains are resistant to fluoroquinolones like moxifloxacin, which target gyrase A, and most people infected with these strains die within a year. In this study, we found that a novel aminobenzimidazole, VXc-486, which targets gyrase B, potently inhibits multiple drug-sensitive isolates and drug-resistant isolates of Mycobacterium tuberculosis in vitro (MICs of 0.03 to 0.30 µg/ml and 0.08 to 5.48 µg/ml, respectively) and reduces mycobacterial burdens in lungs of infected mice in vivo. VXc-486 is active against drug-resistant isolates, has bactericidal activity, and kills intracellular and dormant M. tuberculosis bacteria in a low-oxygen environment. Furthermore, we found that VXc-486 inhibits the growth of multiple strains of Mycobacterium abscessus, Mycobacterium avium complex, and Mycobacterium kansasii (MICs of 0.1 to 2.0 µg/ml), as well as that of several strains of Nocardia spp. (MICs of 0.1 to 1.0 µg/ml). We made a direct comparison of the parent compound VXc-486 and a phosphate prodrug of VXc-486 and showed that the prodrug of VXc-486 had more potent killing of M. tuberculosis than did VXc-486 in vivo. In combination with other antimycobacterial drugs, the prodrug of VXc-486 sterilized M. tuberculosis infection when combined with rifapentine-pyrazinamide and bedaquiline-pyrazinamide in a relapse infection study in mice. Furthermore, the prodrug of VXc-486 appeared to perform at least as well as the gyrase A inhibitor moxifloxacin. These findings warrant further development of the prodrug of VXc-486 for the treatment of tuberculosis and nontuberculosis mycobacterial infections.


Subject(s)
Anti-Bacterial Agents/therapeutic use , Benzimidazoles/therapeutic use , Mycobacterium Infections/drug therapy , Topoisomerase II Inhibitors/therapeutic use , Animals , Female , Humans , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Microbial Sensitivity Tests
9.
Antimicrob Agents Chemother ; 59(3): 1569-82, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25547360

ABSTRACT

VX-787 is a novel inhibitor of influenza virus replication that blocks the PB2 cap-snatching activity of the influenza viral polymerase complex. Viral genetics and X-ray crystallography studies provide support for the idea that VX-787 occupies the 7-methyl GTP (m(7)GTP) cap-binding site of PB2. VX-787 binds the cap-binding domain of the PB2 subunit with a KD (dissociation constant) of 24 nM as determined by isothermal titration calorimetry (ITC). The cell-based EC50 (the concentration of compound that ensures 50% cell viability of an uninfected control) for VX-787 is 1.6 nM in a cytopathic effect (CPE) assay, with a similar EC50 in a viral RNA replication assay. VX-787 is active against a diverse panel of influenza A virus strains, including H1N1pdm09 and H5N1 strains, as well as strains with reduced susceptibility to neuraminidase inhibitors (NAIs). VX-787 was highly efficacious in both prophylaxis and treatment models of mouse influenza and was superior to the neuraminidase inhibitor, oseltamivir, including in delayed-start-to-treat experiments, with 100% survival at up to 96 h postinfection and partial survival in groups where the initiation of therapy was delayed up to 120 h postinfection. At different doses, VX-787 showed a 1-log to >5-log reduction in viral load (relative to vehicle controls) in mouse lungs. Overall, these favorable findings validate the PB2 subunit of the viral polymerase as a drug target for influenza therapy and support the continued development of VX-787 as a novel antiviral agent for the treatment of influenza infection.


Subject(s)
Antiviral Agents/pharmacology , DNA-Directed RNA Polymerases/antagonists & inhibitors , Influenza A virus/drug effects , Viral Proteins/antagonists & inhibitors , Administration, Oral , Animals , Biological Availability , Cell Line , Dogs , HEK293 Cells , Humans , Influenza, Human/drug therapy , Influenza, Human/virology , Madin Darby Canine Kidney Cells , Male , Mice , Mice, Inbred BALB C , Orthomyxoviridae Infections/drug therapy , Orthomyxoviridae Infections/virology
10.
J Med Chem ; 57(21): 8792-816, 2014 Nov 13.
Article in English | MEDLINE | ID: mdl-25317480

ABSTRACT

Compound 3 is a potent aminobenzimidazole urea with broad-spectrum Gram-positive antibacterial activity resulting from dual inhibition of bacterial gyrase (GyrB) and topoisomerase IV (ParE), and it demonstrates efficacy in rodent models of bacterial infection. Preclinical in vitro and in vivo studies showed that compound 3 covalently labels liver proteins, presumably via formation of a reactive metabolite, and hence presented a potential safety liability. The urea moiety in compound 3 was identified as being potentially responsible for reactive metabolite formation, but its replacement resulted in loss of antibacterial activity and/or oral exposure due to poor physicochemical parameters. To identify second-generation aminobenzimidazole ureas devoid of reactive metabolite formation potential, we implemented a metabolic shift strategy, which focused on shifting metabolism away from the urea moiety by introducing metabolic soft spots elsewhere in the molecule. Aminobenzimidazole urea 34, identified through this strategy, exhibits similar antibacterial activity as that of 3 and did not label liver proteins in vivo, indicating reduced/no potential for reactive metabolite formation.


Subject(s)
Anti-Bacterial Agents/chemical synthesis , Benzimidazoles/chemical synthesis , Enzyme Inhibitors/chemical synthesis , Animals , Anti-Bacterial Agents/metabolism , Benzimidazoles/metabolism , DNA Gyrase/metabolism , DNA Topoisomerase IV/antagonists & inhibitors , Drug Design , Enzyme Inhibitors/metabolism , Humans , Microbial Sensitivity Tests , Microsomes, Liver/metabolism , Structure-Activity Relationship , Topoisomerase II Inhibitors/metabolism , Urea/analogs & derivatives , Urea/chemical synthesis , Urea/metabolism
11.
J Med Chem ; 57(15): 6668-78, 2014 Aug 14.
Article in English | MEDLINE | ID: mdl-25019388

ABSTRACT

In our effort to develop agents for the treatment of influenza, a phenotypic screening approach utilizing a cell protection assay identified a series of azaindole based inhibitors of the cap-snatching function of the PB2 subunit of the influenza A viral polymerase complex. Using a bDNA viral replication assay (Wagaman, P. C., Leong, M. A., and Simmen, K. A. Development of a novel influenza A antiviral assay. J. Virol. Methods 2002, 105, 105-114) in cells as a direct measure of antiviral activity, we discovered a set of cyclohexyl carboxylic acid analogues, highlighted by VX-787 (2). Compound 2 shows strong potency versus multiple influenza A strains, including pandemic 2009 H1N1 and avian H5N1 flu strains, and shows an efficacy profile in a mouse influenza model even when treatment was administered 48 h after infection. Compound 2 represents a first-in-class, orally bioavailable, novel compound that offers potential for the treatment of both pandemic and seasonal influenza and has a distinct advantage over the current standard of care treatments including potency, efficacy, and extended treatment window.


Subject(s)
Antiviral Agents/chemistry , Aza Compounds/chemistry , Indoles/chemistry , RNA-Dependent RNA Polymerase/antagonists & inhibitors , Viral Proteins/antagonists & inhibitors , Administration, Oral , Animals , Antiviral Agents/chemical synthesis , Antiviral Agents/pharmacology , Aza Compounds/chemical synthesis , Aza Compounds/pharmacology , Biological Availability , Dogs , Drug Resistance, Viral , Indoles/chemical synthesis , Indoles/pharmacology , Influenza A virus/drug effects , Influenza A virus/physiology , Madin Darby Canine Kidney Cells , Male , Mice, Inbred BALB C , Models, Molecular , Molecular Structure , Orthomyxoviridae Infections/drug therapy , Rats , Species Specificity , Stereoisomerism , Structure-Activity Relationship , Virus Replication/drug effects
12.
Bioorg Med Chem Lett ; 24(9): 2177-81, 2014 May 01.
Article in English | MEDLINE | ID: mdl-24685546

ABSTRACT

A series of dual targeting inhibitors of bacterial gyrase B and topoisomerase IV were identified and optimized to mid-to-low nanomolar potency against a variety of bacteria. However, in spite of seemingly adequate exposure achieved upon IV administration, the in vivo efficacy of the early lead compounds was limited by high levels of binding to serum proteins. To overcome this limitation, targeted serum shift prediction models were generated for each subclass of interest and were applied to the design of prospective analogs. As a result, numerous compounds with comparable antibacterial potency and reduced protein binding were generated. These efforts culminated in the synthesis of compound 10, a potent inhibitor with low serum shift that demonstrated greatly improved in vivo efficacy in two distinct rat infection models.


Subject(s)
Anti-Bacterial Agents/blood , Bacteria/enzymology , DNA Gyrase/metabolism , DNA Topoisomerase IV/antagonists & inhibitors , Topoisomerase II Inhibitors/blood , Animals , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/metabolism , Anti-Bacterial Agents/pharmacology , Bacteria/drug effects , Bacterial Infections/drug therapy , Bacterial Infections/enzymology , Bacterial Infections/microbiology , Blood Proteins/metabolism , DNA Topoisomerase IV/metabolism , Humans , Rats , Topoisomerase II Inhibitors/chemistry , Topoisomerase II Inhibitors/metabolism , Topoisomerase II Inhibitors/pharmacology
14.
Bioorg Med Chem Lett ; 22(11): 3693-8, 2012 Jun 01.
Article in English | MEDLINE | ID: mdl-22560473

ABSTRACT

A series of 2,6-disubstituted aminoalkoxypyrimidine carboxamides (AAPCs) with potent inhibition of bacterial NAD(+)-dependent DNA ligase was discovered through the use of structure-guided design. Two subsites in the NAD(+)-binding pocket were explored to modulate enzyme inhibitory potency: a hydrophobic selectivity region was explored through a series of 2-alkoxy substituents while the sugar (ribose) binding region of NAD(+) was explored via 6-alkoxy substituents.


Subject(s)
Amides/chemistry , Anti-Bacterial Agents/chemical synthesis , Bacterial Proteins/antagonists & inhibitors , DNA Ligases/antagonists & inhibitors , Drug Design , Enzyme Inhibitors/chemical synthesis , Amides/chemical synthesis , Amides/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Bacterial Proteins/metabolism , Binding Sites , Catalytic Domain , Computer Simulation , Crystallography, X-Ray , DNA Ligase ATP , DNA Ligases/metabolism , Enterococcus faecalis/drug effects , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Humans , Microbial Sensitivity Tests , NAD/metabolism , Pyrimidines/chemistry , Structure-Activity Relationship
15.
J Chem Inf Model ; 52(4): 1027-38, 2012 Apr 23.
Article in English | MEDLINE | ID: mdl-22448735

ABSTRACT

Target selection is a critical step in the majority of modern drug discovery programs. The viability of a drug target depends on two components: biological relevance and chemical tractability. The concept of druggability was introduced to describe the second component, and it is defined as the ability of a target to bind a drug-like molecule with a therapeutically useful level of affinity. To investigate the rules that govern druggability, we developed an algorithm to isolate and characterize the binding pockets of protein targets. Using this algorithm, we performed a comparative analysis between the relevant pockets of 60 targets of approved drugs and a diverse set of 440 ligand-binding pockets. As a result, we defined a preferred property space for druggable pockets based on five key properties (volume, depth, enclosure, percentage of charged residues and hydrophobicity), and we represented it with a set of simple rules. These rules may be applicable in the future to evaluate the chemical tractability of prospective targets.


Subject(s)
Algorithms , Drug Discovery , Drugs, Investigational/chemistry , Molecular Docking Simulation , Proteins/chemistry , Small Molecule Libraries/chemistry , Binding Sites , Clinical Trials, Phase III as Topic , Databases, Pharmaceutical , Humans , Hydrogen Bonding , Hydrophobic and Hydrophilic Interactions , Molecular Targeted Therapy , Protein Binding , Protein Conformation , Proteins/agonists , Proteins/antagonists & inhibitors , Static Electricity , Structure-Activity Relationship
16.
J Med Chem ; 53(7): 2986-97, 2010 Apr 08.
Article in English | MEDLINE | ID: mdl-20235539

ABSTRACT

In order to investigate the evolution of binding efficiency in successful drug discovery programs, a data set of 60 lead/drug pairs with known binding affinities has been compiled and analyzed. Low-end thresholds for the binding efficiencies of viable leads and drugs have been derived. On average, the drugs in the set are significantly larger and more potent but have similar lipophilicity relative to their originating leads, suggesting that the ability to maintain low levels of lipophilicity while increasing molecular weight is one of the keys to a successful drug discovery program. A number of examples demonstrate that large increases in binding efficiency from leads to more elaborate drugs sharing the same scaffold can be achieved. The importance of dissecting a lead structure to identify the most efficient fragments and the option of sacrificing binding efficiency to optimize other properties are discussed, and relevant examples are highlighted.


Subject(s)
Drug Discovery/methods , Pharmaceutical Preparations/metabolism , Databases, Factual , Hydrophobic and Hydrophilic Interactions , Ligands , Models, Molecular , Molecular Conformation , Molecular Weight , Pharmaceutical Preparations/chemistry
17.
J Med Chem ; 51(17): 5243-63, 2008 Sep 11.
Article in English | MEDLINE | ID: mdl-18690678

ABSTRACT

The discovery of new antibacterial agents with novel mechanisms of action is necessary to overcome the problem of bacterial resistance that affects all currently used classes of antibiotics. Bacterial DNA gyrase and topoisomerase IV are well-characterized clinically validated targets of the fluoroquinolone antibiotics which exert their antibacterial activity through inhibition of the catalytic subunits. Inhibition of these targets through interaction with their ATP sites has been less clinically successful. The discovery and characterization of a new class of low molecular weight, synthetic inhibitors of gyrase and topoisomerase IV that bind to the ATP sites are presented. The benzimidazole ureas are dual targeting inhibitors of both enzymes and possess potent antibacterial activity against a wide spectrum of relevant pathogens responsible for hospital- and community-acquired infections. The discovery and optimization of this novel class of antibacterials by the use of structure-guided design, modeling, and structure-activity relationships are described. Data are presented for enzyme inhibition, antibacterial activity, and in vivo efficacy by oral and intravenous administration in two rodent infection models.


Subject(s)
Anti-Bacterial Agents/chemistry , Benzimidazoles/pharmacology , DNA Topoisomerase IV/antagonists & inhibitors , Topoisomerase II Inhibitors , Urea/analogs & derivatives , Animals , Anti-Bacterial Agents/pharmacology , Bacterial Proteins , Benzimidazoles/chemistry , Binding Sites , Drug Design , Microbial Sensitivity Tests , Rodentia , Structure-Activity Relationship , Urea/pharmacology
18.
Bioorg Med Chem Lett ; 18(1): 44-8, 2008 Jan 01.
Article in English | MEDLINE | ID: mdl-18054488

ABSTRACT

A series of potent thiol-containing aryl sulfone TACE inhibitors were designed and synthesized. The SAR and MMP selectivity of the series were investigated. In particular, compound 8b showed excellent in vitro potency against the isolated enzyme and good selectivity over MMP-2, -7, -8, -9, and -13. The X-ray structure of 8b in complex with TACE was also obtained.


Subject(s)
ADAM Proteins/antagonists & inhibitors , Protease Inhibitors/chemical synthesis , Protease Inhibitors/pharmacology , Sulfhydryl Compounds/chemical synthesis , Sulfhydryl Compounds/pharmacology , Sulfones/chemical synthesis , Sulfones/pharmacology , ADAM17 Protein , Crystallography, X-Ray , Drug Design , Isoenzymes/antagonists & inhibitors , Kinetics , Metalloendopeptidases/antagonists & inhibitors , Models, Molecular , Protease Inhibitors/chemistry , Structure-Activity Relationship , Substrate Specificity , Sulfhydryl Compounds/chemistry , Sulfones/chemistry
19.
Bioorg Med Chem Lett ; 17(8): 2250-3, 2007 Apr 15.
Article in English | MEDLINE | ID: mdl-17289381

ABSTRACT

A series of potent thiol-containing aryl sulfonamide TACE inhibitors was designed and synthesized. The SAR and MMP selectivity of the series were investigated. In particular, compound 4b has shown excellent in vitro potency against the isolated TACE enzyme and good selectivity over MMP-2, -7, -8, -9, and -13. The X-ray structure of 4b bound to TACE was obtained.


Subject(s)
ADAM Proteins/antagonists & inhibitors , Drug Design , Enzyme Inhibitors/chemical synthesis , Sulfonamides/chemical synthesis , ADAM17 Protein , Arthritis, Rheumatoid/drug therapy , Crohn Disease/drug therapy , Enzyme Inhibitors/pharmacology , Humans , Metalloproteases , Structure-Activity Relationship , Substrate Specificity , Sulfhydryl Compounds , Sulfonamides/pharmacology
20.
J Chem Inf Model ; 47(2): 251-3, 2007.
Article in English | MEDLINE | ID: mdl-17260981

ABSTRACT

The recent article "On Evaluating Molecular-Docking Methods for Pose Prediction and Enrichment Factors" (Chen H. et al. J. Chem. Inf. Model. 2006, 46, 401-415) contains a series of comments on a similar study we published in Proteins in 2004 (Perola et al. Proteins 2004, 56, 235-249). We believe that some of these comments are misleading, and we feel that an adequate response is in order.


Subject(s)
Computational Biology/methods , Proteins/chemistry , Proteins/isolation & purification , Software , Models, Chemical
SELECTION OF CITATIONS
SEARCH DETAIL