Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters











Database
Language
Publication year range
1.
J Phys Chem B ; 128(32): 7792-7802, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-39092664

ABSTRACT

The present study utilizes molecular dynamics simulations to examine how different anions compete for protein solvation in aqueous solutions of ionic liquids (ILs). Ubiquitin is used as model protein and studied in IL mixtures sharing the same cation, 1-ethyl-3-methylimidazolium (EMIM), and two different anions in the same solution, from combinations of dicyanamide (DCA), chloride (Cl), nitrate (NO3), and tetrafluoroborate (BF4). Our findings reveal that specific interactions between anions and the protein are paramount in IL solvation, but that combinations of anions are not additive. For example, DCA exhibits a remarkable ability to form hydrogen bonds with the protein, resulting in a significantly stronger preferential binding to the protein than other anions. However, the combination of DCA with NO3, which also forms hydrogen bonds with the protein, results in a smaller preferential solvation of the protein than the combination of DCA with chloride ions, which are weaker binders. Thus, combining anions with varying affinities for the protein surface modulates the overall ion accumulation through nonadditive mechanisms, highlighting the importance of the understanding of competition for specific interaction sites, cooperative binding, bulk-solution affinity, and overall charge compensations, on the overall solvation capacity of the solution. Such knowledge may allow for the design of novel IL-based processes in biotechnology and material science, where fine-tuning protein solvation is crucial for optimizing performance and functionality.


Subject(s)
Anions , Ionic Liquids , Molecular Dynamics Simulation , Water , Ionic Liquids/chemistry , Anions/chemistry , Water/chemistry , Ubiquitin/chemistry , Hydrogen Bonding , Solubility , Imidazoles/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL