Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
Add more filters










Publication year range
1.
Nutrients ; 16(6)2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38542714

ABSTRACT

Obesity is a risk factor for many diseases, such as type 2 diabetes and cardiovascular diseases. In line with the need for precision medicine, the search for biomarkers reporting the progression of obesity- and diet-associated disorders is urgent. We used NMR to determine the metabolomics profile of key organs (lung, liver, heart, skeletal muscle, kidney, and brain) and serum from male C57Bl/6J mice (5 weeks old) fed for 6, 10, and 14 weeks on a high-fat and high-sucrose diet (HFHSD) vs. a standard diet (STD). We determined metabolite concentrations in the organs at each time point, which allowed us to discriminate age- and diet-related effects as well as the interactions between both, highlighting the need to evaluate the influence of age as a confounding factor on metabolic signatures. Notably, the analysis revealed the influence of time on metabolite concentrations in the STD condition, probably reflecting the juvenile-to-adult transition. Variations impacted the liver and lung metabolites, revealing the strong influence of the HFHS diet on normal metabolism maturation during youth.


Subject(s)
Diabetes Mellitus, Type 2 , Sucrose , Mice , Male , Animals , Sucrose/metabolism , Diet, High-Fat/adverse effects , Diabetes Mellitus, Type 2/complications , Cross-Sectional Studies , Obesity/metabolism , Metabolomics , Liver/metabolism , Mice, Inbred C57BL
2.
Gut Microbes ; 15(2): 2281015, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37985749

ABSTRACT

Supplementation with probiotics has emerged as a promising therapeutic tool to manage metabolic diseases. We investigated the effects of a mix of Bifidobacterium animalis subsp. lactis LA804 and Lactobacillus gasseri LA806 on high-fat (HF) diet -induced metabolic disease in mice. Supplementation with the probiotic mix in HF diet-fed mice (HF-Pr2) reduced weight and fat mass gains, decreased hepatic lipid accumulation, and lowered plasma triglyceride peak during an oral lipid tolerance test. At the molecular level, the probiotic mix protected against HF-induced rise in mRNA levels of genes related to lipid uptake, metabolism, and storage in the liver and white adipose tissues, and strongly decreased mRNA levels of genes related to inflammation in the white adipose tissue and to oxidative stress in the liver. Regarding intestinal homeostasis, the probiotic mix did not prevent HF-induced gut permeability but slightly modified microbiota composition without correcting the dysbiosis induced by the HF diet. Probiotic supplementation also modified the cecal bile acid (BA) profile, leading to an increase in the Farnesoid-X-Receptor (FXR) antagonist/agonist ratio between BA species. In agreement, HF-Pr2 mice exhibited a strong inhibition of FXR signaling pathway in the ileum, which was associated with lipid metabolism protection. This is consistent with recent reports proposing that inhibition of intestinal FXR activity could be a potent mechanism to overcome metabolic disorders. Altogether, our results demonstrate that the probiotic mix evaluated, when administered preventively to HF diet-fed mice could limit obesity and associated lipid metabolism disorders, likely through the inhibition of FXR signaling in the intestinal tract.


Subject(s)
Gastrointestinal Microbiome , Probiotics , Mice , Animals , Diet, High-Fat/adverse effects , Lipid Metabolism , Weight Gain , Probiotics/pharmacology , Probiotics/therapeutic use , Liver/metabolism , Triglycerides , RNA, Messenger/metabolism , RNA, Messenger/pharmacology , Mice, Inbred C57BL , Bile Acids and Salts/metabolism
3.
Sci Rep ; 13(1): 5520, 2023 04 04.
Article in English | MEDLINE | ID: mdl-37015932

ABSTRACT

Chronic kidney disease (CKD) is associated with osteosarcopenia, and because a physical decline in patients correlates with an increased risk of morbidity, an improvement of the musculoskeletal system is expected to improve morbi-mortality. We recently uncovered that the intestinal hormone Fibroblast Growth Factor 19 (FGF19) is able to promote skeletal muscle mass and strength in rodent models, in addition to its capacity to improve glucose homeostasis. Here, we tested the effects of a treatment with recombinant human FGF19 in a CKD mouse model, which associates sarcopenia and metabolic disorders. In 5/6 nephrectomized (5/6Nx) mice, subcutaneous FGF19 injection (0.1 mg/kg) during 18 days increased skeletal muscle fiber size independently of food intake and weight gain, associated with decreased gene expression of myostatin. Furthermore, FGF19 treatment attenuated glucose intolerance and reduced hepatic expression of gluconeogenic genes in uremic mice. Importantly, the treatment also decreased gene expression of liver inflammatory markers in CKD mice. Therefore, our results suggest that FGF19 may represent a novel interesting therapeutic strategy for a global improvement of sarcopenia and metabolic complications in CKD.


Subject(s)
Fibroblast Growth Factors , Renal Insufficiency, Chronic , Sarcopenia , Animals , Humans , Mice , Fibroblast Growth Factors/pharmacology , Inflammation/pathology , Muscle Fibers, Skeletal/metabolism , Muscle, Skeletal/metabolism , Renal Insufficiency, Chronic/complications , Sarcopenia/pathology
4.
Nutr Metab Cardiovasc Dis ; 32(7): 1797-1807, 2022 07.
Article in English | MEDLINE | ID: mdl-35618560

ABSTRACT

BACKGROUND AND AIMS: TOTUM-63, a fibre and polyphenol rich plant-based composition, has been demonstrated to significantly improve body weight and glucose homeostasis in animal models of obesity. Our study aimed at exploring whether the mechanisms include modulation of gut (glucose-dependent insulinotropic peptide (GIP), glucagon-like petide-1 (GLP-1), cholecystokinin (CCK), peptide YY (PYY)) and pancreatic (insulin, glucagon) hormones, all important regulators of glucose control, appetite and body weight. METHODS AND RESULTS: Male C57BL/6JRJ mice were assigned to either standard chow (CON), high fat diet (HF, 60% energy from fat) or HF-TOTUM-63 (HF diet 60% supplemented with TOTUM-63 2.7%) for 10 weeks. In vivo glucose homeostasis (oral glucose tolerance test (OGTT), intraperitoneal pyruvate tolerance test (ipPTT)), glucose-induced portal vein hormone concentration, gut hormone gene expression and protein content as well as enteroendocrine cell contents were assessed at the end of the dietary intervention. The present study evidenced that TOTUM-63 reduced food intake, limited weight gain and improved glucose and pyruvate tolerance of HF-fed animals. This was associated with an increase in PYY content in the colon, an altered pattern of PYY secretion between fasted and glucose-stimulated states, and with a significant improvement in the portal vein concentration of GLP-1, insulin and glucagon, but not GIP and CCK, in response to glucose stimulation. CONCLUSION: Overall, these data suggest that TOTUM-63 might have a specific impact on gut L-cells and on the expression and secretion of GLP-1 and PYY incretins, potentially contributing to the reduced food intake, body weight gain and improved glucose homeostasis.


Subject(s)
Glucagon , Plant Extracts/pharmacology , Polyphenols , Animals , Blood Glucose/metabolism , Body Weight , Diet, High-Fat , Gastric Inhibitory Polypeptide , Glucagon-Like Peptide 1/metabolism , Humans , Insulin/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Obese , Peptide YY , Polyphenols/pharmacology , Pyruvates , Weight Gain
5.
Nutrients ; 15(1)2022 Dec 24.
Article in English | MEDLINE | ID: mdl-36615754

ABSTRACT

Interactions between mitochondria and the endoplasmic reticulum, known as MAMs, are altered in the liver in obesity, which contributes to disruption of the insulin signaling pathway. In addition, the plasma level of glycine is decreased in obesity, and the decrease is strongly correlated with the severity of insulin resistance. Certain nutrients have been shown to regulate MAMs; therefore, we tested whether glycine supplementation could reduce insulin resistance in the liver by promoting MAM integrity. Glycine (5 mM) supported MAM integrity and insulin response in primary rat hepatocytes cultured under control and lipotoxic (palmitate 500 µM) conditions for 18 h. In contrast, in C57 BL/6 JOlaHsd mice (male, 6 weeks old) fed a high-fat, high-sucrose diet (HFHS) for 16 weeks, glycine supplementation (300 mg/kg) in drinking water during the last 6 weeks (HFHS-Gly) did not reverse the deleterious impact of HFHS-feeding on liver MAM integrity. In addition, glycine supplementation worsened fasting glycemia and glycemic response to intraperitoneal pyruvate injection compared to HFHS. The adverse impact of glycine supplementation on hepatic gluconeogenesis was further supported by the higher oxaloacetate/acetyl-CoA ratio in the liver in HFHS-Gly compared to HFHS. Although glycine improves MAM integrity and insulin signaling in the hepatocyte in vitro, no beneficial effect was found on the overall metabolic profile of HFHS-Gly-fed mice.


Subject(s)
Glucose Intolerance , Insulin Resistance , Male , Rats , Mice , Animals , Glucose Intolerance/metabolism , Insulin Resistance/physiology , Gluconeogenesis , Glycine/pharmacology , Liver/metabolism , Obesity/drug therapy , Obesity/metabolism , Insulin , Diet, High-Fat/adverse effects , Dietary Supplements , Mice, Inbred C57BL
6.
Sci Rep ; 11(1): 19184, 2021 09 28.
Article in English | MEDLINE | ID: mdl-34584168

ABSTRACT

Despite decades of use of low protein diets (LPD) in the management of chronic kidney disease (CKD), their mechanisms of action are unclear. A reduced production of uremic toxins could contribute to the benefits of LPDs. Aromatic amino-acids (AA) are precursors of major uremic toxins such as p-cresyl sulfate (PCS) and indoxyl sulfate (IS). We hypothesize that a low aromatic amino acid diet (LA-AAD, namely a low intake of tyrosine, tryptophan and phenylalanine) while being normoproteic, could be as effective as a LPD, through the decreased production of uremic toxins. Kidney failure was chemically induced in mice with a diet containing 0.25% (w/w) of adenine. Mice received three different diets for six weeks: normoproteic diet (NPD: 14.7% proteins, aromatic AAs 0.019%), LPD (5% proteins, aromatic AAs 0.007%) and LA-AAD (14% proteins, aromatic AAs 0.007%). Both LPD and LA-AAD significantly reduced proteinuria, kidney fibrosis and inflammation. While LPD only slightly decreased plasma free PCS and free IS compared to NPD; free fractions of both compounds were significantly decreased by LA-AAD. These results suggest that a LA-AAD confers similar benefits of a LPD in delaying the progression of CKD through a reduction in some key uremic toxins production (such as PCS and IS), with a lower risk of malnutrition.


Subject(s)
Amino Acids, Aromatic/adverse effects , Diet, Protein-Restricted/methods , Kidney/pathology , Malnutrition/prevention & control , Renal Insufficiency, Chronic/diet therapy , Animals , Diet, Protein-Restricted/adverse effects , Disease Models, Animal , Fibrosis , Humans , Male , Malnutrition/etiology , Mice , Renal Insufficiency, Chronic/pathology , Uremic Toxins/metabolism
7.
Article in English | MEDLINE | ID: mdl-34444432

ABSTRACT

Postmenopausal women represent a vulnerable population towards endocrine disruptors due to hormonal deficit. We previously demonstrated that chronic exposure of ovariectomized C57Bl6/J mice fed a high-fat, high-sucrose diet to a low-dose mixture of chemicals with one dioxin, one polychlorobiphenyl, one phthalate, and bisphenol A triggered metabolic alterations in the liver but the intestine was not explored. Yet, the gastrointestinal tract is the main route by which pollutants enter the body. In the present study, we investigated the metabolic consequences of ovarian withdrawal and E2 replacement on the various gut segments along with investigating the impact of the mixture of pollutants. We showed that genes encoding estrogen receptors (Esr1, Gper1 not Esr2), xenobiotic processing genes (e.g., Cyp3a11, Cyp2b10), and genes related to gut homeostasis in the jejunum (e.g., Cd36, Got2, Mmp7) and to bile acid biosynthesis in the gut (e.g., Fgf15, Slc10a2) and liver (e.g., Abcb11, Slc10a1) were under estrogen regulation. Exposure to pollutants mimicked some of the effects of E2 replacement, particularly in the ileum (e.g., Esr1, Nr1c1) suggesting that the mixture had estrogen-mimetic activities. The present findings have important implications for the understanding of estrogen-dependent metabolic alterations with regards to situations of loss of estrogens as observed after menopause.


Subject(s)
Environmental Pollutants , Animals , Diet, High-Fat , Environmental Pollutants/toxicity , Estradiol , Estrogens , Female , Humans , Liver , Mice , Mice, Inbred C57BL , Ovariectomy
8.
FASEB J ; 35(6): e21650, 2021 06.
Article in English | MEDLINE | ID: mdl-33993539

ABSTRACT

Mesenchymal stem cells from healthy adipose tissue are adipocytes progenitors with immunosuppressive potential that are used for years in cell therapy. Whether adipose stem cells (ASC) may prevent inflammation in early obesity is not known. To address this question, we performed a kinetic study of high-fat (HF) diet induced obesity in mice to follow the immune regulating functions of adipose stem cells (ASC) isolated from the subcutaneous (SAT) and the visceral adipose tissue (VAT). Our results show that, early in obesity and before inflammation was detected, HF diet durably and differently activated ASC from SAT and VAT. Subcutaneous ASC from HF-fed mice strongly inhibited the proliferation of activated T lymphocytes, whereas visceral ASC selectively inhibited TNFα expression by macrophages and simultaneously released higher concentrations of IL6. These depot specific differences may contribute to the low-grade inflammation that develops with obesity in VAT while inflammation in SAT is delayed. The mechanisms involved differ from those already described for naïve cells activation with inflammatory cytokines and probably engaged metabolic activation. These results evidence that adipose stem cells are metabolic sensors acquiring an obesity-primed immunocompetent state in answer to depot-specific intrinsic features with overnutrition, placing these cells ahead of inflammation in the local dialog with immune cells.


Subject(s)
Adipose Tissue/immunology , Inflammation/immunology , Intra-Abdominal Fat/immunology , Mesenchymal Stem Cells/immunology , Obesity/physiopathology , Subcutaneous Fat/immunology , T-Lymphocytes/immunology , Adipose Tissue/pathology , Animals , Inflammation/pathology , Intra-Abdominal Fat/pathology , Lymphocyte Activation , Male , Mesenchymal Stem Cells/pathology , Mice , Mice, Inbred C57BL , Subcutaneous Fat/pathology , T-Lymphocytes/pathology
9.
Chemosphere ; 262: 127841, 2021 Jan.
Article in English | MEDLINE | ID: mdl-32784060

ABSTRACT

Environmental pollutants suspected of disrupting the endocrine system are considered etiologic factors in the epidemic of metabolic disorders. As regulation of energy metabolism relies on the integrated action of a large number of hormones, we hypothesized that certain chemicals could trigger changes in glucocorticoid signaling. To this end, we exposed C57Bl6/J female and male mice between 5 and 20 weeks of age to a mixture of 2,3,7,8- tetrachlorodibenzo-p-dioxin (20 pg/kg body weight/day [bw/d]), polychlorobiphenyl 153 (200 ng/kg bw/d), di-[2-ethylhexyl]-phthalate (500 µg/kg bw/d) and bisphenol A (40 µg/kg bw/d). In female mice fed a standard diet (ST), we observed a decrease in plasma levels of leptin as well as a reduced expression of corticoid receptors Nr3c1 and Nr3c2, of leptin and of various canonical genes related to the circadian clock machinery in visceral (VAT) but not subcutaneous (SAT) adipose tissue. However, Nr3c1 and Nr3c2 mRNA levels did not change in high-fat-fed females exposed to pollutants. In ST-fed males, pollutants caused the same decrease of Nr3c1 mRNA levels in VAT observed in ST-fed females but levels of Nr3c2 and other clock-related genes found to be down-regulated in female VAT were enhanced in male SAT and not affected in male VAT. The expression of corticoid receptors was not affected in the livers of both sexes in response to pollutants. In summary, exposure to a mixture of pollutants at doses lower than the no-observed adverse effect levels (NoAELs) resulted in sex-dependent glucocorticoid signaling disturbances and clock-related gene expression modifications in the adipose tissue of ST-fed mice.


Subject(s)
Environmental Pollutants/toxicity , Glucocorticoids/metabolism , Adipose Tissue/metabolism , Animals , Benzhydryl Compounds , Body Weight , Environmental Pollutants/metabolism , Female , Gene Expression , Leptin/blood , Liver/metabolism , Male , Mice , Mice, Inbred C57BL , Phenols , Polychlorinated Dibenzodioxins/metabolism , RNA, Messenger/metabolism , Sensitivity and Specificity
10.
J Nutr Biochem ; 72: 108211, 2019 10.
Article in English | MEDLINE | ID: mdl-31473509

ABSTRACT

Postmenopausal women may be at particular risk when exposed to chemicals especially endocrine disruptors because of hormonal deficit. To get more insight, ovariectomized C57Bl6/J mice fed a high-fat high-sucrose diet were chronically exposed from 5 to 20 weeks of age to a low-dose mixture of chemicals with one dioxin, one polychlorobiphenyl, one phthalate and bisphenol A. Part of the mice received as well E2 implants to explore the potential estrogenic dependency of the metabolic alterations. With this model, estrogen loss resulted in glucose but not lipid metabolism impairment, and E2 replacement normalized the enhanced body and fat pad weight, and the glucose intolerance and insulin resistance linked to ovariectomy. It also altered cholesterol metabolism in the liver concurrently with enhanced estrogen receptor Esr1 mRNA level. In addition, fat depots responded differently to estrogen withdrawal (e.g., selective mRNA enhancement of adipogenesis markers in subcutaneous and of inflammation in visceral fat pads) and replacement challenges. Importantly, the pollutant mixture impacted lipid deposition and mRNA expression of several genes related to lipid metabolism but not Esr1 in the liver. Adiponectin levels were altered as well. In addition, the mRNA abundance of the various estrogen receptors was regionally impacted in fat tissues. Besides, xenobiotic processing genes did not change in response to the pollutant mixture in the liver. The present findings bring new light on estrogen-dependent metabolic alterations with regards to situations of loss of estrogens as observed after menopause.


Subject(s)
Diet, High-Fat/adverse effects , Environmental Pollutants/toxicity , Estradiol/administration & dosage , Intra-Abdominal Fat/drug effects , Subcutaneous Fat/drug effects , Animals , Estradiol/pharmacology , Female , Gene Expression Regulation/drug effects , Glucose/metabolism , Intra-Abdominal Fat/metabolism , Lipid Metabolism/drug effects , Liver/drug effects , Liver/metabolism , Mice, Inbred C57BL , Ovariectomy , Subcutaneous Fat/metabolism , Sucrose/administration & dosage , Sucrose/adverse effects , Toxicity Tests, Chronic , Xenobiotics/pharmacokinetics
11.
Stem Cells Int ; 2019: 9323864, 2019.
Article in English | MEDLINE | ID: mdl-31223312

ABSTRACT

White adipose tissues are functionally heterogeneous and differently manage the excess of energy supply. While the expansion of subcutaneous adipose tissues (SAT) is protective in obesity, that of visceral adipose tissues (VAT) correlates with the emergence of metabolic diseases. Maintained in fat pads throughout life, adipose stem cells (ASC) are mesenchymal-like stem cells with adipogenesis and multipotent differentiation potential. ASC from distinct fat pads have long been reported to present distinct proliferation and differentiation potentials that are maintained in culture, yet the origins of these intrinsic differences are still unknown. Metabolism is central to stem cell fate decision in line with environmental changes. In this study, we performed high-resolution nuclear magnetic resonance (NMR) metabolomic analyses of ASC culture supernatants in order to characterize their metabolic phenotype in culture. We identified and quantified 29 ASC exometabolites and evaluated their consumption or secretion over 72 h of cell culture. Both ASC used glycolysis and mitochondrial metabolism, as evidenced by the high secretions of lactate and citrate, respectively, but V-ASC mostly used glycolysis. By varying the composition of the cell culture medium, we showed that glutaminolysis, rather than glycolysis, supported the secretion of pyruvate, alanine, and citrate, evidencing a peculiar metabolism in ASC cells. The comparison of the two types of ASC in glutamine-free culture conditions also revealed the role of glutaminolysis in the limitation of pyruvate routing towards the lactate synthesis, in S-ASC but not in V-ASC. Altogether, our results suggest a difference between depots in the capacity of ASC mitochondria to assimilate pyruvate, with probable consequences on their differentiation potential in pathways requiring an increased mitochondrial activity. These results highlight a pivotal role of metabolic mechanisms in the discrimination between ASC and provide new perspectives in the understanding of their functional differences.

12.
Chemosphere ; 220: 1187-1199, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30722647

ABSTRACT

Excessive consumption of industrialized food and beverages is a major etiologic factor in the epidemics of obesity and associated metabolic diseases because these products are rich in fat and sugar. In addition, they contain food contact materials and environmental pollutants identified as metabolism disrupting chemicals. To evaluate the metabolic impact of these dietary threats (individually or combined), we used a male mouse model of chronic exposure to a mixture of low-dose archetypal food-contaminating chemicals that was added in standard or high-fat, high-sucrose (HFHS) diet. Specifically, the mixture contained bisphenol A, diethylhexylphthalate, 2,3,7,8-tetrachlorodibenzo-p-dioxine and polychlorinated biphenyl 153. Exposure lasted from 5 to 20 weeks of age. Metabolic exploration was conducted setting the basis of candidate gene expression mRNA analyses in liver, jejunum and adipose tissue depots from 20 week-old mice. Strong metabolic deleterious effects of the HFHS diet were demonstrated in line with obesity-associated metabolic features and insulin resistance. Pollutant exposure resulted in significant changes on plasma triglyceride levels and on the expression levels of genes mainly encoding xenobiotic processing in jejunum; estrogen receptors, regulators of lipoprotein lipase and inflammatory markers in jejunum and adipose tissues as well as adipogenesis markers. Importantly, the impact of pollutants was principally evidenced under standard diet. In addition, depending on nutritional conditions and on the metabolic tissue considered, the impact of pollutants could mimic or oppose the HFHS effects. Collectively, the present study extends the cocktail effect concept of a low-dosed pollutant mixture and originally points to tissue-specificity responsiveness especially in jejunum and adipose tissues.


Subject(s)
Diet, High-Fat/adverse effects , Environmental Exposure/adverse effects , Environmental Pollutants/adverse effects , Sucrose/metabolism , Adipose Tissue/metabolism , Animals , Gene Expression Profiling , Jejunum/metabolism , Male , Mice , Obesity/metabolism , Tissue Distribution
13.
Environ Toxicol Pharmacol ; 57: 34-40, 2018 Jan.
Article in English | MEDLINE | ID: mdl-29175711

ABSTRACT

We recently hypothesized that a mixture of low-dosed dioxin, polychlorobiphenyl, phthalate and bisphenol may induce estrogeno-mimetic activities in a model of lifelong-exposed female mice. Herein, we evaluated the impact of this mixture in estrogen deficiency conditions. Based on the protective effects of estrogens against metabolic disorders, we reasoned that exposure to pollutants should attenuate the deleterious metabolic effects induced by ovariectomy. In line with the hypothesis, exposure to pollutants was found to reduce the impact of ovariectomy on glucose intolerance and insulin resistance, to enhance the expression levels of the hepatic estrogen receptor α and to attenuate the ovariectomy-induced enhancement of the chemokine MCP-1/CCL2 considered as an indicator of estrogen signalling. Because of the very low doses of pollutants used in mixture, these findings may have strong implications in terms of understanding the potential role of environmental contaminants in the development of metabolic diseases, specifically in females during menopausal transition.


Subject(s)
Environmental Pollutants/pharmacology , Estrogens/pharmacology , Ovariectomy , Adipose Tissue/drug effects , Adipose Tissue/metabolism , Animals , Benzhydryl Compounds/pharmacology , Blood Glucose/analysis , Chemokine CCL2/metabolism , Diethylhexyl Phthalate/pharmacology , Estrogen Receptor alpha , Female , Insulin/blood , Insulin Resistance , Liver/drug effects , Liver/metabolism , Mice, Inbred C57BL , Phenols/pharmacology , Polychlorinated Biphenyls/pharmacology , Polychlorinated Dibenzodioxins/pharmacology
14.
J Nutr Biochem ; 45: 83-93, 2017 07.
Article in English | MEDLINE | ID: mdl-28433925

ABSTRACT

Environmental pollutants are potential etiologic factors of obesity and diabetes that reach epidemic proportions worldwide. However, it is important to determine if pollutants could exert metabolic defects without directly inducing obesity. The metabolic disturbances triggered in nonobese mice lifelong exposed to a mixture of low-dose pollutants (2,3,7,8-tetrachlorodibenzo-p-dioxine, polychlorinated biphenyl 153, diethylhexyl-phthalate, and bisphenol A) were compared with changes provoked by a high-fat high-sucrose (HFHS) diet not containing the pollutant mixture. Interestingly, females exposed to pollutants exhibited modifications in lipid homeostasis including a significant increase of hepatic triglycerides but also distinct features from those observed in diet-induced obese mice. For example, they did not gain weight nor was glucose tolerance impacted. To get more insight, a transcriptomic analysis was performed in liver for comparison. We observed that in addition to the xenobiotic/drug metabolism pathway, analysis of the hepatic signature illustrated that the steroid/cholesterol, fatty acid/lipid and circadian clock metabolic pathways were targeted in response to pollutants as observed in the diet-induced obese mice. However, the specific sets of dysregulated annotated genes (>1300) did not overlap more than 40% between both challenges with some genes specifically altered only in response to pollutant exposure. Collectively, results show that pollutants and HFHS affect common metabolic pathways, but by different, albeit overlapping, mechanisms. This is highly relevant for understanding the synergistic effects between pollutants and the obesogenic diet reported in the literature.


Subject(s)
Diet, High-Fat/adverse effects , Environmental Pollutants/administration & dosage , Environmental Pollutants/toxicity , Liver/drug effects , Animals , Benzhydryl Compounds/administration & dosage , Benzhydryl Compounds/toxicity , Circadian Clocks/drug effects , Circadian Clocks/genetics , Duodenum/drug effects , Environmental Exposure/adverse effects , Fatty Acids/genetics , Fatty Acids/metabolism , Female , Gene Expression Profiling , Gene Expression Regulation/drug effects , Inactivation, Metabolic/genetics , Insulin Resistance , Liver/physiology , Mice, Inbred C57BL , Phenols/administration & dosage , Phenols/toxicity , Polychlorinated Dibenzodioxins/administration & dosage , Polychlorinated Dibenzodioxins/toxicity , Reproducibility of Results , Steroids/biosynthesis
15.
PLoS One ; 10(4): e0124015, 2015.
Article in English | MEDLINE | ID: mdl-25909471

ABSTRACT

Pollutants are suspected to contribute to the etiology of obesity and related metabolic disorders. Apart from occupational exposure which concerns a subset of chemicals, humans are mostly exposed to a large variety of chemicals, all life-long and at low doses. Food ingestion is a major route of exposure and it is suggested that pollutants have a worsened impact when combined with a high-fat diet. In the experimental studies described herein, we aimed to add further evidence on the metabolic impact of food pollutants using a recently set up model in which mice are life-long fed a high-fat/high-sucrose diet (HFSD) with/without common food pollutants shown to exhibit metabolic disrupting activities. Specifically, this mixture comprised bisphenol A, dioxin, polychlorobiphenyl PCB153, and phthalate and was added in HFSD at doses resulting in mice exposure at the Tolerable Daily Intake dose range for each pollutant. We herein focused on the 7-week-old females which exhibited early signs of obesity upon HFSD feeding. We observed no signs of toxicity and no additional weight gain following exposure to the mixture but alleviated HFSD-induced glucose intolerance in the absence of alteration of gluconeogenesis and steatosis. It suggested that the observed metabolic improvement was more likely due to effects on muscle and/or adipose tissues rather than on the liver. Consistently, female mice exhibited enhanced lean/fat mass ratio and skeletal muscle insulin sensitivity. Moreover, expression levels of inflammatory markers were reduced in adipose tissue at 7 but enhanced at 12 weeks of age in agreement with the inverse alterations of glucose tolerance observed at these ages upon pollutant exposure in the HFSD-fed females. Collectively, these data suggest apparent biphasic effects of pollutants upon HFSD feeding along with obesity development. These effects were not observed in males and may depend on interactions between diet and pollutants.


Subject(s)
Diet, High-Fat/adverse effects , Environmental Pollutants/adverse effects , Metabolome , Metabolomics , Obesity/etiology , Obesity/metabolism , Adipose Tissue/metabolism , Adipose Tissue/pathology , Animals , Body Weight , Disease Models, Animal , Fatty Acids/metabolism , Female , Gene Expression , Inflammation Mediators/metabolism , Liver/metabolism , Metabolomics/methods , Mice , Oxidation-Reduction , RNA, Messenger/genetics , RNA, Messenger/metabolism , Sulfotransferases/genetics , Sulfotransferases/metabolism , Time Factors
16.
FASEB J ; 27(9): 3860-70, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23756648

ABSTRACT

Environmental contaminants are suspected to be involved in the epidemic incidence of metabolic disorders, food ingestion being a primarily route of exposure. We hypothesized that life-long consumption of a high-fat diet that contains low doses of pollutants will aggravate metabolic disorders induced by obesity itself. Mice were challenged from preconception throughout life with a high-fat diet containing pollutants commonly present in food (2,3,7,8-tetrachlorodibenzo-p-dioxin, polychlorinated biphenyl 153, diethylhexyl phthalate, and bisphenol A), added at low doses in the tolerable daily intake range. We measured several blood parameters, glucose and insulin tolerance, hepatic lipid accumulation, and gene expression in adult mice. Pollutant-exposed mice exhibited significant sex-dependent metabolic disorders in the absence of toxicity and weight gain. In males, pollutants increased the expression of hepatic genes (from 36 to 88%) encoding proteins related to cholesterol biosynthesis and decreased (40%) hepatic total cholesterol levels. In females, there was a marked deterioration of glucose tolerance, which may be related to the 2-fold induction of estrogen sulfotransferase and reduced expression of estrogen receptor α (25%) and estrogen target genes (>34%). Because of the very low doses of pollutants used in the mixture, these findings may have strong implications in terms of understanding the potential role of environmental contaminants in food in the development of metabolic diseases.


Subject(s)
Liver/drug effects , Liver/metabolism , Animals , Benzhydryl Compounds/toxicity , Blotting, Western , Body Weight/drug effects , Female , Male , Mice , Mice, Inbred C57BL , Mice, Obese , Phenols/toxicity , Polychlorinated Biphenyls/toxicity , Polychlorinated Dibenzodioxins/toxicity , Reverse Transcriptase Polymerase Chain Reaction
17.
Lipids Health Dis ; 8: 58, 2009 Dec 18.
Article in English | MEDLINE | ID: mdl-20017959

ABSTRACT

BACKGROUND: Mainly dependent on hormone-sensitive lipase, lipolysis is differently impaired between fat depots in human obesity. Perilipin A expression is a critical element in adipocyte lipolysis. The present study aimed at comparing expression and subcellular distribution of perilipin and hormone-sensitive lipase in two abdominal adipose tissues of lean and obese women. We examined whether regional differences in perilipin expression contribute to impaired lipolytic rates. METHODS: Abdominal subcutaneous and omental adipose tissues were obtained from six lean and ten obese women. We measured total protein content and relative distribution of hormone-sensitive lipase and perilipin proteins between lipid and non-lipid fractions in tissue homogenates. Hormone-sensitive lipase and perilipin mRNA levels, adipocyte size, basal (non-stimulated) and noradrenaline-stimulated lipolysis in isolated adipocytes were determined. RESULTS: Adipocytes were significantly larger in the obese versus the lean women and in subcutaneous versus omental fat. Expressed as a function of cell number, basal lipolysis and noradrenaline responsiveness were higher in subcutaneous versus omental adipocytes from the obese women (P < 0.05). Despite higher or identical mRNA levels in the lean and the obese subjects and in subcutaneous and omental tissues, perilipin protein expression was lower in both depots in the obese versus the lean women, and in subcutaneous versus omental in both lean and obese women (P < 0.05). Perilipin was mostly (above 80%) present in the lipid fraction in both depots from the obese patients and the value decreased to 60% in the lean subjects (P < 0.05). Perilipin protein expression was inversely correlated to adipocyte size and basal lipolysis in both depots. Despite higher mRNA levels, hormone-sensitive lipase protein expression decreased in both depots of the obese women. Regional difference for hormone-sensitive lipase was reported in lipid fraction of subcutaneous fat of the obese subjects: hormone-sensitive lipase content was twice as low as in omental adipose tissue. CONCLUSION: In both fat depots, a reduced perilipin protein expression was observed in women obesity. Perilipin protein level may contribute to differences in basal lipolysis and in adipocyte size between fat depots and may regulate lipid accumulation in adipocytes. Differences in hormone-sensitive lipase subcellular distribution were reported between fat depots in the obese women.


Subject(s)
Adipose Tissue/enzymology , Obesity/enzymology , Phosphoproteins/metabolism , Sterol Esterase/metabolism , Thinness/enzymology , Adipocytes/drug effects , Adipocytes/enzymology , Adipocytes/pathology , Adipose Tissue/drug effects , Adipose Tissue/pathology , Adult , Blotting, Western , Carrier Proteins , Cell Separation , Cell Size/drug effects , Female , Gene Expression Regulation/drug effects , Humans , Intracellular Space/drug effects , Intracellular Space/metabolism , Lipolysis/drug effects , Norepinephrine/pharmacology , Obesity/pathology , Organ Specificity/drug effects , Perilipin-1 , Phosphoproteins/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , Sterol Esterase/genetics , Thinness/pathology
18.
Metabolism ; 55(3): 396-401, 2006 Mar.
Article in English | MEDLINE | ID: mdl-16483885

ABSTRACT

The adiponectin receptors, AdipoR1 and AdipoR2, are thought to transmit the insulin-sensitizing effects of adiponectin, an adipokine secreted by adipocytes. Modifications of their expression in insulin-sensitive tissues (skeletal muscle, liver, and adipose tissue) could therefore play a role in the control of insulin sensitivity and the development of insulin resistance. Recent data in mice supported this possibility. We examined whether the expression of adiponectin receptors (messenger RNA [mRNA] concentrations) is controlled in vivo in rats (Wistar) by nutritional factors (high-fat [HF] vs high-carbohydrate diet, fasting vs fed state) and whether this expression is decreased in an experimental model of insulin resistance, the obese Zucker rat. In Wistar rats, neither an HF diet nor fasting modified the mRNA concentrations of AdipoR1 in muscle, liver, or adipose tissue; the only modification observed was a decrease (P < .05) in AdipoR2 mRNA level in the liver of rats fed with an HF diet. In obese Zucker rats compared with their lean controls, neither AdipoR1 nor AdipoR2 expression was modified in muscle. AdipoR2 expression was slightly decreased in adipose tissue, whereas the expression of both AdipoR1 and AdipoR2 was increased (P < .05) in the liver of obese Zucker rats. In conclusion, contrary to what was reported in mice, the expression of adiponectin receptors in rats is poorly responsive to changes in nutritional conditions and is not decreased in a model of insulin resistance. These results do not support an important role for the expression of AdipoR1 and AdipoR2 in the modulation of sensitivity to insulin.


Subject(s)
Gene Expression Regulation , Obesity/metabolism , Receptors, Cell Surface/genetics , Animals , Insulin Resistance , Male , Nutritional Physiological Phenomena , RNA, Messenger/analysis , Rats , Rats, Wistar , Rats, Zucker , Receptors, Adiponectin , Receptors, Cell Surface/physiology , Tissue Distribution
19.
Am J Respir Cell Mol Biol ; 29(5): 620-6, 2003 Nov.
Article in English | MEDLINE | ID: mdl-14568882

ABSTRACT

Previous investigations have evidenced the importance of CCAAT/enhancer-binding proteins (C/EBPs) and peroxisome proliferator-activated receptor (PPAR)gamma for lung development, especially for alveolar type II cells (ATII). This prompted us to explore whether ATII maturation-promoting mediators controlled their expression in isolated ATII. In whole rat lung, C/EBPalpha, beta, delta, and PPARgamma mRNAs increased 3-5 times between gestational day 18 and term (Day 22), dropped around birth, then reincreased. C/EBPbeta and delta, but not PPARgamma, displayed similar profile in isolated ATII; C/EBPalpha transcript disappeared and the protein became hardly detectable in isolated cells. In cultured ATII, dexamethasone increased C/EBPbeta and PPARgamma mRNAs 2-4 times, and cyclic AMP increased C/EBPbeta and delta mRNAs approximately 1.5 times. Whereas retinoic acid increased C/EBPbeta and PPARgamma mRNAs 1.5 times in ATII in vitro, vitamin-A deficiency strongly decreased fetal lung C/EBPalpha, beta, and PPARgamma transcripts in vivo. C/EBPbeta, delta, and PPARgamma mRNAs were also increased in vitro by epidermal growth factor and keratinocyte growth factor, whereas they were unchanged by the maturation inhibitor transforming growth factor-beta. C/EBPalpha expression was not reinduced by any mediator. Changes in transcripts were reflected in protein levels analyzed through Western blotting. These results argue for a role of these factors in ATII functional maturation, and indicate a multifactorial control of their ontogeny.


Subject(s)
CCAAT-Enhancer-Binding Proteins/metabolism , Lung/metabolism , Receptors, Cytoplasmic and Nuclear/metabolism , Transcription Factors/metabolism , Animals , Epithelium/metabolism , Female , Gene Expression Profiling , Male , Rats , Vitamin A Deficiency/metabolism
20.
J Lipid Res ; 44(11): 2127-34, 2003 Nov.
Article in English | MEDLINE | ID: mdl-12897191

ABSTRACT

Lipogenesis is considered less active in human than in rat adipose tissue. This could be explained by different nutritional conditions, namely high-carbohydrate (HCHO) diet in rats and high-fat (HF) diet in humans. Adipose tissue was sampled (postabsorptive state) in rats and humans receiving HCHO or HF diets, ad libitum fed humans, and obese subjects. We measured 1) mRNA concentrations of fatty acid synthase (FAS), acetyl-CoA carboxylase 1 (ACC1), sterol regulatory element binding protein 1c (SREBP-1c), and carbohydrate response element binding protein (ChREBP), 2) SREBP-1c protein, and 3) FAS activity. FAS, ACC1, ChREBP, and SREBP1-c mRNA concentrations were unaffected by diet in humans or in rats. FAS and ACC1 mRNA levels were lower in humans than in rats (P < 0.05). FAS activity was unaffected by diet and was lower in humans (P < 0.05). SREBP-1c mRNA concentrations were similar in rats and humans, but the precursor and mature forms of SREBP-1c protein were less abundant in humans (P < 0.05). ChREBP mRNA concentrations were lower in humans than in rats. In conclusion, the lipogenic capacity of adipose tissue is lower in humans than in rats. This is not related to differences in diet and is probably explained by lower abundance of SREBP-1c protein. A decreased expression of ChREBP could also play a role.


Subject(s)
Adipose Tissue/metabolism , Gene Expression Regulation , Lipids/biosynthesis , Acetyl-CoA Carboxylase/genetics , Adult , Animals , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors , Body Mass Index , CCAAT-Enhancer-Binding Proteins/genetics , CCAAT-Enhancer-Binding Proteins/metabolism , Coenzymes/metabolism , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Fatty Acid Synthases/genetics , Humans , Liver/metabolism , Male , Obesity/genetics , Obesity/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Rats , Rats, Sprague-Dawley , Reverse Transcriptase Polymerase Chain Reaction , Sterol Regulatory Element Binding Protein 1 , Transcription Factors/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...