Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 96(14): 8070-3, 1999 Jul 06.
Article in English | MEDLINE | ID: mdl-10393949

ABSTRACT

We have previously described biological model systems for studying tumor suppression in which, by using H-1 parvovirus as a selective agent, cells with a strongly suppressed malignant phenotype (KS or US) were derived from malignant cell lines (K562 or U937). By using cDNA display on the K562/KS cells, 15 cDNAs were now isolated, corresponding to genes differentially regulated in tumor suppression. Of these, TSAP9 corresponds to a TCP-1 chaperonin, TSAP13 to a regulatory proteasome subunit, and TSAP21 to syntaxin 11, a vesicular trafficking molecule. The 15 cDNAs were used as a molecular fingerprint in different tumor-suppression models. We found that a similar pattern of differential regulation is shared by activation of p53, p21(Waf1), and the human homologue of Drosophila seven in absentia, SIAH-1. Because SIAH-1 is differentially expressed in the various models, we characterized it at the protein and functional levels. The 32-kDa, mainly nuclear protein encoded by SIAH-1, can induce apoptosis and promote tumor suppression. These results suggest the existence of a common mechanism of tumor suppression and apoptosis shared by p53, p21(Waf1), and SIAH-1 and involving regulation of the cellular machinery responsible for protein folding, unfolding, and trafficking.


Subject(s)
Cyclins/genetics , Genes, p53 , Neoplasms/genetics , Nuclear Proteins/genetics , Protein Folding , Animals , Apoptosis , Cyclin-Dependent Kinase Inhibitor p21 , Cyclins/metabolism , Drosophila/genetics , Humans , K562 Cells , Molecular Sequence Data , Nuclear Proteins/metabolism , Parvovirus/genetics , Transfection , Tumor Suppressor Protein p53/metabolism , U937 Cells , Ubiquitin-Protein Ligases
2.
Nat Med ; 4(7): 835-8, 1998 Jul.
Article in English | MEDLINE | ID: mdl-9662377

ABSTRACT

Previously, we cloned a cDNA fragment, TSIP 2 (tumor suppressor inhibited pathway clone 2), that detects by northern blot analysis of M1-LTR6 cells a 3-kb mRNA downregulated during p53-induced apoptosis. Cloning the full-length TSIP 2 cDNA showed that it corresponds to the presenilin 1 (PS1) gene, in which mutations have been reported in early-onset familial Alzheimer's disease. Here we demonstrate that PS1 is downregulated in a series of model systems for p53-dependent and p53-independent apoptosis and tumor suppression. To investigate the biological relevance of this downregulation, we stably transfected U937 cells with antisense PS1 cDNA. The downregulation of PS1 in these U937 transfectants results in reduced growth with an increased fraction of the cells in apoptosis. When injected into mice homozygous for severe combined immunodeficiency disease (scid/scid mice), these cells show a suppression of their malignant phenotype. Our results indicate that PS1, initially identified in a neurodegenerative disease, may also be involved in the regulation of cancer-related pathways.


Subject(s)
Apoptosis , Cyclins/metabolism , Membrane Proteins/biosynthesis , Tumor Suppressor Protein p53/metabolism , Animals , Base Sequence , Cyclin-Dependent Kinase Inhibitor p21 , DNA, Complementary , Gene Expression , Humans , Membrane Proteins/genetics , Mice , Molecular Sequence Data , Presenilin-1 , Tumor Cells, Cultured
3.
Proc Natl Acad Sci U S A ; 95(3): 1131-5, 1998 Feb 03.
Article in English | MEDLINE | ID: mdl-9448297

ABSTRACT

Interphasic nuclear organization has a key function in genome biology. We demonstrate that p21WAF-1, by influencing gene expression and inducing chromosomal repositioning in tumor suppression, plays a major role as a nuclear organizer. Transfection of U937 tumor cells with p21WAF-1 resulted in expression of the HUMSIAH (human seven in absentia homologue), Rb, and Rbr-2 genes and strong suppression of the malignant phenotype. p21(WAF-1) drastically modified the compartmentalization of the nuclear genome. DNase I genome exposure and fluorescence in situ hybridization show, respectively, a displacement of the sensitive sites to the periphery of the nucleus and repositioning of chromosomes 13, 16, 17, and 21. These findings, addressing nuclear architecture modulations, provide potentially significant perspectives for the understanding of tumor suppression.


Subject(s)
Cell Nucleus/physiology , Cell Transformation, Neoplastic/genetics , Chromosomes/physiology , Cyclins/physiology , Gene Expression Regulation, Neoplastic , Genes, Tumor Suppressor , Chromosomes, Human, Pair 13/physiology , Chromosomes, Human, Pair 16/physiology , Chromosomes, Human, Pair 17/physiology , Chromosomes, Human, Pair 21/physiology , Cyclin-Dependent Kinase Inhibitor p21 , Cyclins/genetics , Deoxyribonuclease I/metabolism , Humans , Nuclear Proteins , Phenotype , Phosphoproteins/biosynthesis , Phosphoproteins/genetics , Protein Biosynthesis , Proteins/genetics , Retinoblastoma Protein/biosynthesis , Retinoblastoma Protein/genetics , Retinoblastoma-Like Protein p130 , Transfection , Tumor Cells, Cultured , Ubiquitin-Protein Ligases
4.
Proc Natl Acad Sci U S A ; 93(9): 3953-7, 1996 Apr 30.
Article in English | MEDLINE | ID: mdl-8632996

ABSTRACT

We report the isolation of 10 differentially expressed cDNAs in the process of apoptosis induced by the p53 tamor suppressor. As a global analytical method, we performed a differential display of mRNA between mouse M1 myeloid leukemia cells and derived clone LTR6 cells, which contain a stably transfected temperature-sensitive mutant of p53. At 32 degrees C wild-type p53 function is activated in LTR6 cells, resulting in programmed cell death. Eight genes are activated (TSAP; tumor suppressor activated pathway), and two are inhibited (TSIP, tumor suppressor inhibited pathway) in their expression. None of the 10 sequences has hitherto been recognized as part of the p53 signaling pathway. Three TSAPs are homologous to known genes. TSAP1 corresponds to phospholipase C beta 4. TSAP2 has a conserved domain homologous to a multiple endocrine neoplasia I (ZFM1) candidate gene. TSAP3 is the mouse homologue of the Drosophila seven in absentia gene. These data provide novel molecules involved in the pathway of wild-type p53 activation. They establish a functional link between a homologue of a conserved developmental Drosophila gene and signal transduction in tumor suppression leading to programmed cell death.


Subject(s)
Apoptosis , DNA, Complementary/metabolism , Drosophila/genetics , Genes, p53 , Nuclear Proteins/genetics , Animals , Base Sequence , Clone Cells , DNA Primers , DNA, Complementary/isolation & purification , Genes, Insect , Leukemia, Experimental , Leukemia, Myeloid, Acute , Mice , Molecular Sequence Data , Polymerase Chain Reaction , RNA, Messenger , Tumor Cells, Cultured , Tumor Suppressor Protein p53/metabolism , Ubiquitin-Protein Ligases , Vertebrates
SELECTION OF CITATIONS
SEARCH DETAIL