Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Hepatology ; 74(3): 1445-1460, 2021 09.
Article in English | MEDLINE | ID: mdl-33768568

ABSTRACT

BACKGROUND AND AIMS: Earlier diagnosis and treatment of intrahepatic cholangiocarcinoma (iCCA) are necessary to improve therapy, yet limited information is available about initiation and evolution of iCCA precursor lesions. Therefore, there is a need to identify mechanisms driving formation of precancerous lesions and their progression toward invasive tumors using experimental models that faithfully recapitulate human tumorigenesis. APPROACH AND RESULTS: To this end, we generated a mouse model which combines cholangiocyte-specific expression of KrasG12D with 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC) diet-induced inflammation to mimic iCCA development in patients with cholangitis. Histological and transcriptomic analyses of the mouse precursor lesions and iCCA were performed and compared with human analyses. The function of genes overexpressed during tumorigenesis was investigated in human cell lines. We found that mice expressing KrasG12D in cholangiocytes and fed a DDC diet developed cholangitis, ductular proliferations, intraductal papillary neoplasms of bile ducts (IPNBs), and, eventually, iCCAs. The histology of mouse and human IPNBs was similar, and mouse iCCAs displayed histological characteristics of human mucin-producing, large-duct-type iCCA. Signaling pathways activated in human iCCA were also activated in mice. The identification of transition zones between IPNB and iCCA on tissue sections, combined with RNA-sequencing analyses of the lesions supported that iCCAs derive from IPNBs. We further provide evidence that tensin-4 (TNS4), which is stimulated by KRASG12D and SRY-related HMG box transcription factor 17, promotes tumor progression. CONCLUSIONS: We developed a mouse model that faithfully recapitulates human iCCA tumorigenesis and identified a gene cascade which involves TNS4 and promotes tumor progression.


Subject(s)
Bile Duct Neoplasms/genetics , Carcinoma, Ductal/genetics , Cholangiocarcinoma/genetics , Disease Models, Animal , Liver Neoplasms, Experimental/genetics , Mice , Tensins/genetics , Animals , Bile Duct Neoplasms/chemically induced , Bile Duct Neoplasms/metabolism , Bile Duct Neoplasms/pathology , Carcinoma, Ductal/chemically induced , Carcinoma, Ductal/metabolism , Carcinoma, Ductal/pathology , Carcinoma, Papillary/chemically induced , Carcinoma, Papillary/genetics , Carcinoma, Papillary/metabolism , Carcinoma, Papillary/pathology , Cholangiocarcinoma/chemically induced , Cholangiocarcinoma/metabolism , Cholangiocarcinoma/pathology , Cholangitis/chemically induced , Cholangitis/complications , HMGB Proteins/genetics , HMGB Proteins/metabolism , Liver Neoplasms, Experimental/chemically induced , Liver Neoplasms, Experimental/metabolism , Liver Neoplasms, Experimental/pathology , Proto-Oncogene Proteins p21(ras)/genetics , Pyridines/toxicity , SOXF Transcription Factors/genetics , SOXF Transcription Factors/metabolism , Signal Transduction , Tensins/metabolism
2.
Curr Opin Gastroenterol ; 36(2): 90-98, 2020 03.
Article in English | MEDLINE | ID: mdl-31850929

ABSTRACT

PURPOSE OF REVIEW: Biliary tract cancers which include intrahepatic and extrahepatic cholangiocarcinomas and gallbladder cancer, are characterized by poor outcome. Therefore, identifying the molecular mechanisms of the disease has become a priority. However, such identification has to cope with extreme heterogeneity of the disease, which results from the variable anatomical location, the numerous cell types of origin and the high number of known genetic alterations. RECENT FINDINGS: Animal models can develop invasive and metastatic tumours that recapitulate as faithfully as possible the molecular features of the human tumours. To generate animal models of cholangiocarcinoma, investigators resorted to the administration of carcinogens, induction of cholestasis, grafting of tumour cells and induction of genetic modifications. SUMMARY: Here, we summarize the currently available genetically engineered animal models, and focus on mice and zebrafish. The experimental strategies that were selected to induce cholangiocarcinoma in a time-controlled and cell-type-specific manner are critically examined. We discuss their strengths and limitations while considering their relevance to human pathophysiology.


Subject(s)
Animals, Genetically Modified , Biliary Tract Neoplasms , Disease Models, Animal , Animals , Bile Duct Neoplasms/genetics , Biliary Tract Neoplasms/genetics , Cholangiocarcinoma/genetics , Humans , Precancerous Conditions/genetics
3.
Rheumatology (Oxford) ; 58(4): 708-718, 2019 04 01.
Article in English | MEDLINE | ID: mdl-30608617

ABSTRACT

OBJECTIVE: Ubiquitination of proteins leads to their degradation by the proteasome, and is regulated by ubiquitin ligases and substrate-specific ubiquitin-specific peptidases (USPs). The ubiquitination process also plays important roles in the regulation of cell metabolism and cell cycle. Here, we found that the expression of several USPs is increased in SSc tenosynovial and skin biopsies, and we demonstrated that USP inhibition decreases TGF-ß signalling in primary fibroblast cell lines. METHODS: High-density transcriptomic studies were performed using total RNA obtained from SSc tenosynovial samples. Confirmatory immunostaining experiments were performed on tenosynovial and skin samples. In vitro experiments were conducted in order to study the influence of USP modulation on responses to TGF-ß stimulation. RESULTS: Tenosynovial biopsies from SSc patients overexpressed known disease-associated gene pathways: fibrosis, cytokines and chemokines, and Wnt/TGF-ß signalling, but also several USPs. Immunohistochemistry experiments confirmed the detection of USPs in the same samples, and in SSc skin biopsies. Exposure of primary fibroblast cell lines to TGF-ß induced USP gene expression. The use of a pan-USP inhibitor decreased SMAD3 phosphorylation, and expression of COL1A1, COL3A1 and fibronectin gene expression in TGF-ß-stimulated fibroblasts. The effect of the USP inhibitor resulted in increased SMAD3 ubiquitination, and was blocked by a proteasome inhibitor, thereby confirming the specificity of its action. CONCLUSION: Overexpression of several USPs, including USP15, amplifies fibrotic responses induced by TGF-ß, and is a potential therapeutic target in SSc.


Subject(s)
Fibroblasts/metabolism , Scleroderma, Systemic/enzymology , Signal Transduction/drug effects , Transforming Growth Factor beta/metabolism , Ubiquitin-Specific Proteases/metabolism , Humans , Scleroderma, Systemic/drug therapy
SELECTION OF CITATIONS
SEARCH DETAIL
...