Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Liver Int ; 44(5): 1219-1232, 2024 May.
Article in English | MEDLINE | ID: mdl-38375985

ABSTRACT

OBJECTIVE: Metabolic dysfunction-associated steatotic liver disease (MASLD) is a global health concern with no effective and specific drug treatment available. The rs2642438 minor allele in mitochondrial amidoxime-reducing component 1 (MARC1) results in an aminoacidic substitution (p.Ala165Thr) and associates with protection against MASLD. However, the mechanisms behind this protective effect are unknown. In this study, we examined the consequences of this aminoacidic substitution on protein stability and subcellular localization. METHODS: We overexpressed the human MARC1 A165 (wild-type) or 165T (mutant) in vivo in mice and in vitro in human hepatoma cells (HepG2 and HuH-7), generated several mutants at position 165 by in situ mutagenesis and then examined protein levels. We also generated HepG2 cells stably overexpressing MARC1 A165 or 165T to test the effect of this substitution on MARC1 subcellular localization. RESULTS: MARC1 165T overexpression resulted in lower protein levels than A165 both in vivo and in vitro. Similarly, any mutant at position 165 showed lower protein levels compared to the wild-type protein. We showed that the 165T mutant protein is polyubiquitinated and its degradation is accelerated through lysine-48 ubiquitin-mediated proteasomal degradation. We also showed that the 165T substitution does not affect the MARC1 subcellular localization. CONCLUSIONS: This study shows that alanine at position 165 in MARC1 is crucial for protein stability, and the threonine substitution at this position leads to a hypomorphic protein variant due to lower protein levels. Our result supports the notion that lowering hepatic MARC1 protein level may be a successful therapeutic strategy for treating MASLD.


Subject(s)
Fatty Liver , Mitochondrial Proteins , Oxidoreductases , Proteasome Endopeptidase Complex , Animals , Humans , Mice , Fatty Liver/metabolism , Proteasome Endopeptidase Complex/metabolism , Proteolysis , Mitochondrial Proteins/genetics , Mitochondrial Proteins/metabolism , Oxidoreductases/genetics , Oxidoreductases/metabolism
2.
ACS Med Chem Lett ; 14(12): 1882-1890, 2023 Dec 14.
Article in English | MEDLINE | ID: mdl-38116431

ABSTRACT

Precise length, shape, and linker attachment points are all integral components to designing efficacious proteolysis targeting chimeras (PROTACs). Due to the synthetic complexity of these heterobifunctional degraders and the difficulty of computational modeling to aid PROTAC design, the exploration of structure-activity relationships remains mostly empirical, which requires a significant investment of time and resources. To facilitate rapid hit finding, we developed capabilities for PROTAC parallel synthesis and purification by harnessing an array of preformed E3-ligand-linker intermediates. In the next iteration of this approach, we developed a rapid, nanomole-scale PROTAC synthesis methodology using amide coupling that enables direct screening of nonpurified reaction mixtures in cell-based degradation assays, as well as logD and EPSA measurements. This approach greatly expands and accelerates PROTAC SAR exploration (5 days instead of several weeks) as well as avoids laborious and solvent-demanding purification of the reaction mixtures, thus making it an economical and more sustainable methodology for PROTAC hit finding.

3.
iScience ; 26(6): 106864, 2023 Jun 16.
Article in English | MEDLINE | ID: mdl-37255666

ABSTRACT

Diffuse large B cell lymphoma (DLBCL) is one of the most common types of aggressive lymphoid malignancies. Here, we explore the contribution of RNA editing to DLBCL pathogenesis. We observed that DNA mutations and RNA editing events are often mutually exclusive, suggesting that tumors can modulate pathway outcomes by altering sequences at either the genomic or the transcriptomic level. RNA editing targets transcripts within known disease-driving pathways such as apoptosis, p53 and NF-κB signaling, as well as the RIG-I-like pathway. In this context, we show that ADAR1-mediated editing within MAVS transcript positively correlates with MAVS protein expression levels, associating with increased interferon/NF-κB signaling and T cell exhaustion. Finally, using targeted RNA base editing tools to restore editing within MAVS 3'UTR in ADAR1-deficient cells, we demonstrate that editing is likely to be causal to an increase in downstream signaling in the absence of activation by canonical nucleic acid receptor sensing.

4.
Nat Cancer ; 2(11): 1224-1242, 2021 11.
Article in English | MEDLINE | ID: mdl-34870237

ABSTRACT

Despite major advancements in lung cancer treatment, long-term survival is still rare, and a deeper understanding of molecular phenotypes would allow the identification of specific cancer dependencies and immune evasion mechanisms. Here we performed in-depth mass spectrometry (MS)-based proteogenomic analysis of 141 tumors representing all major histologies of non-small cell lung cancer (NSCLC). We identified six distinct proteome subtypes with striking differences in immune cell composition and subtype-specific expression of immune checkpoints. Unexpectedly, high neoantigen burden was linked to global hypomethylation and complex neoantigens mapped to genomic regions, such as endogenous retroviral elements and introns, in immune-cold subtypes. Further, we linked immune evasion with LAG3 via STK11 mutation-dependent HNF1A activation and FGL1 expression. Finally, we develop a data-independent acquisition MS-based NSCLC subtype classification method, validate it in an independent cohort of 208 NSCLC cases and demonstrate its clinical utility by analyzing an additional cohort of 84 late-stage NSCLC biopsy samples.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Proteogenomics , Carcinoma, Non-Small-Cell Lung/genetics , Fibrinogen/therapeutic use , Genomics/methods , Humans , Immune Evasion/genetics , Lung Neoplasms/genetics
5.
FASEB J ; 35(7): e21741, 2021 07.
Article in English | MEDLINE | ID: mdl-34143546

ABSTRACT

Polo-like kinase 1 (PLK1) is an important cell cycle kinase and an attractive target for anticancer treatments. An ATP-competitive small molecular PLK1 inhibitor, volasertib, has reached phase III in clinical trials in patients with refractory acute myeloid leukemia as a combination treatment with cytarabine. However, severe side effects limited its use. The origin of the side effects is unclear and might be due to insufficient specificity of the drug. Thus, identifying potential off-targets to volasertib is important for future clinical trials and for the development of more specific drugs. In this study, we used thermal proteome profiling (TPP) to identify proteome-wide targets of volasertib. Apart from PLK1 and proteins regulated by PLK1, we identified about 200 potential volasertib off-targets. Comparison of this result with the mass-spectrometry analysis of volasertib-treated cells showed that phosphatidylinositol phosphate and prostaglandin metabolism pathways are affected by volasertib. We confirmed that PIP4K2A and ZADH2-marker proteins for these pathways-are, indeed, stabilized by volasertib. PIP4K2A, however, was not affected by another PLK1 inhibitor onvansertib, suggesting that PIP4K2A is a true off-target of volasertib. Inhibition of these proteins is known to impact both the immune response and fatty acid metabolism and could explain some of the side effects seen in volasertib-treated patients.


Subject(s)
Antigens, Surface/metabolism , Cell Cycle Proteins/metabolism , Phosphotransferases (Alcohol Group Acceptor)/metabolism , Protein Kinase Inhibitors/pharmacology , Protein Serine-Threonine Kinases/metabolism , Proto-Oncogene Proteins/metabolism , Pteridines/pharmacology , Cytarabine/pharmacology , Fatty Acids/metabolism , HL-60 Cells , Humans , Immunity/drug effects , Jurkat Cells , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/metabolism , Piperazines/pharmacology , Proteome/metabolism , Pyrazoles/pharmacology , Quinazolines/pharmacology , Polo-Like Kinase 1
6.
Blood ; 131(24): 2670-2681, 2018 06 14.
Article in English | MEDLINE | ID: mdl-29545328

ABSTRACT

Hepatitis B virus (HBV) infection is endemic in some parts of Asia, Africa, and South America and remains to be a significant public health problem in these areas. It is known as a leading risk factor for the development of hepatocellular carcinoma, but epidemiological studies have also shown that the infection may increase the incidence of several types of B-cell lymphoma. Here, by characterizing altogether 275 Chinese diffuse large B-cell lymphoma (DLBCL) patients, we showed that patients with concomitant HBV infection (surface antigen positive [HBsAg+]) are characterized by a younger age, a more advanced disease stage at diagnosis, and reduced overall survival. Furthermore, by whole-genome/exome sequencing of 96 tumors and the respective peripheral blood samples and targeted sequencing of 179 tumors from these patients, we observed an enhanced rate of mutagenesis and a distinct set of mutation targets in HBsAg+ DLBCL genomes, which could be partially explained by the activities of APOBEC and activation-induced cytidine deaminase. By transcriptome analysis, we further showed that the HBV-associated gene expression signature is contributed by the enrichment of genes regulated by BCL6, FOXO1, and ZFP36L1. Finally, by analysis of immunoglobulin heavy chain gene sequences, we showed that an antigen-independent mechanism, rather than a chronic antigenic simulation model, is favored in HBV-related lymphomagenesis. Taken together, we present the first comprehensive genomic and transcriptomic study that suggests a link between HBV infection and B-cell malignancy. The genetic alterations identified in this study may also provide opportunities for development of novel therapeutic strategies.


Subject(s)
Gene Expression Regulation, Neoplastic , Hepatitis B virus/physiology , Hepatitis B/complications , Lymphoma, Large B-Cell, Diffuse/genetics , Lymphoma, Large B-Cell, Diffuse/virology , Mutation , Transcriptome , Adult , Age Factors , China/epidemiology , Female , Hepatitis B/epidemiology , Hepatitis B/genetics , Hepatitis B/virology , Hepatitis B Surface Antigens/analysis , Humans , Lymphoma, Large B-Cell, Diffuse/epidemiology , Male , Middle Aged , Tumor Protein p73/genetics
7.
Mol Cell Proteomics ; 17(6): 1144-1155, 2018 06.
Article in English | MEDLINE | ID: mdl-29572246

ABSTRACT

Chemotherapeutics cause the detachment and death of adherent cancer cells. When studying the proteome changes to determine the protein target and mechanism of action of anticancer drugs, the still-attached cells are normally used, whereas the detached cells are usually ignored. To test the hypothesis that proteomes of detached cells contain valuable information, we separately analyzed the proteomes of detached and attached HCT-116, A375, and RKO cells treated for 48 h with 5-fluorouracil, methotrexate and paclitaxel. Individually, the proteomic data on attached and detached cells had comparable performance in target and drug mechanism deconvolution, whereas the combined data significantly improved the target ranking for paclitaxel. Comparative analysis of attached versus detached proteomes provided further insight into cell life and death decision making. Six proteins consistently up- or downregulated in the detached versus attached cells regardless of the drug and cell type were discovered; their role in cell death/survival was tested by silencing them with siRNA. Knocking down USP11, CTTN, ACAA2, and EIF4H had anti-proliferative effects, affecting UHRF1 additionally sensitized the cells to the anticancer drugs, while knocking down RNF-40 increased cell survival against the treatments. Therefore, adding detached cells to the expression proteomics analysis of drug-treated cells can significantly increase the analytical value of the approach. The data have been deposited to the ProteomeXchange with identifier PXD007686.


Subject(s)
Antineoplastic Agents/pharmacology , Cell Death/drug effects , Cell Survival/drug effects , Neoplasms/metabolism , Proteome/drug effects , Cell Line, Tumor , Fluorouracil/pharmacology , Humans , Methotrexate/pharmacology , Paclitaxel/pharmacology , Proteomics
8.
Mol Cell Proteomics ; 16(5): 936-948, 2017 05.
Article in English | MEDLINE | ID: mdl-28302922

ABSTRACT

Most implementations of mass spectrometry-based proteomics involve enzymatic digestion of proteins, expanding the analysis to multiple proteolytic peptides for each protein. Currently, there is no consensus of how to summarize peptides' abundances to protein concentrations, and such efforts are complicated by the fact that error control normally is applied to the identification process, and do not directly control errors linking peptide abundance measures to protein concentration. Peptides resulting from suboptimal digestion or being partially modified are not representative of the protein concentration. Without a mechanism to remove such unrepresentative peptides, their abundance adversely impacts the estimation of their protein's concentration. Here, we present a relative quantification approach, Diffacto, that applies factor analysis to extract the covariation of peptides' abundances. The method enables a weighted geometrical average summarization and automatic elimination of incoherent peptides. We demonstrate, based on a set of controlled label-free experiments using standard mixtures of proteins, that the covariation structure extracted by the factor analysis accurately reflects protein concentrations. In the 1% peptide-spectrum match-level FDR data set, as many as 11% of the peptides have abundance differences incoherent with the other peptides attributed to the same protein. If not controlled, such contradicting peptide abundance have a severe impact on protein quantifications. When adding the quantities of each protein's three most abundant peptides, we note as many as 14% of the proteins being estimated as having a negative correlation with their actual concentration differences between samples. Diffacto reduced the amount of such obviously incorrectly quantified proteins to 1.6%. Furthermore, by analyzing clinical data sets from two breast cancer studies, our method revealed the persistent proteomic signatures linked to three subtypes of breast cancer. We conclude that Diffacto can facilitate the interpretation and enhance the utility of most types of proteomics data.


Subject(s)
Peptides/metabolism , Proteins/metabolism , Breast Neoplasms/metabolism , Female , Humans , Proteomics , Saccharomyces cerevisiae/metabolism , Sequence Analysis, Protein , Signal-To-Noise Ratio , Software
9.
Discoveries (Craiova) ; 4(4): e67, 2016 Dec 01.
Article in English | MEDLINE | ID: mdl-32309586

ABSTRACT

Theoretical distribution of isoelectric points (pI values) of human blood proteins exhibits multi-modality with a deep minimum in the range between pI 7.30 and 7.50. Considering that the pH of human blood is 7.4±0.1, normal forms of human proteins tend to eschew this specific pI region, thus avoiding charge neutrality that can result in enhanced precipitation. However, abnormal protein isoforms (proteoforms), which are the hallmarks and potential biomarkers of certain diseases, are likely to be found everywhere in the pI distribution, including this "forbidden" region. Therefore, we hypothesized that damaging proteoforms characteristic for neurodegenerative diseases are best detected around pI≈7.4. Blood serum samples from 14 Alzheimer's disease patients were isolated by capillary isoelectric focusing and analyzed by liquid chromatography hyphenated with tandem mass spectrometry. Consistent with the pI≈7.4 hypothesis, the 8 patients with fast memory decline had a significantly (p<0.003) higher concentration of proteoforms in the pI=7.4±0.1 region than the 6 patients with a slow memory decline. Moreover, protein compositions differed more from each other than for any other investigated pI region, providing absolute separation of the fast and slow decliner samples. The discovery of the "treasure island" of abnormal proteoforms in form of the pI≈7.4 region promises to boost biomarker development for a range of diseases.

10.
Anal Chem ; 87(23): 11840-6, 2015 Dec 01.
Article in English | MEDLINE | ID: mdl-26531800

ABSTRACT

Prefractionation of proteins is often employed to improve analysis specificity in proteomics. Prefractionation based on the isoelectric point (pI) is particularly attractive because pI is a well-defined parameter and it is orthogonal to hydrophobicity on which reversed-phase chromatography is based. However, direct capillary electrophoresis of blood proteins is challenging due to its high content of salts and charged small molecules. Here, we couple an online desalinator device to our multijunction capillary isoelectric focusing (MJ-CIEF) instrument and perform direct isoelectric separation of human blood plasma. In a proof-of-principle experiment, pooled samples of patients with progressive mild cognitive impairment and corresponding healthy controls were investigated. Injection of 3 µL of plasma containing over 100 µg of proteins into the desalinator was followed by pI fractionation with MJ-CIEF in less than 1 h. Shotgun proteomics of 12 collected fractions from each of the 5 replicates of pooled samples resulted in the identification and accurate quantification (median CV between the replicates is <4%) of nearly 365 protein groups from 4030 unique peptides (with <1% FDR for both peptides and proteins). The obtained results include several proteins previously reported as AD markers. The isoelectric point of each quantified protein was calculated using a set of 7 synthetic peptides spiked into the samples. Several proteins with a significant pI shift between their isoforms in the patient and control samples were identified. The presented method is straightforward, robust, and scalable; therefore, it can be used in both biological and clinical applications.


Subject(s)
Blood Proteins/analysis , Cognitive Dysfunction/blood , Internet , Isoelectric Focusing , Biomarkers/analysis , Buffers , Chemical Fractionation , Electrophoresis, Capillary , Humans
11.
Mol Cell Proteomics ; 13(11): 3211-23, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25100859

ABSTRACT

Based on conventional data-dependent acquisition strategy of shotgun proteomics, we present a new workflow DeMix, which significantly increases the efficiency of peptide identification for in-depth shotgun analysis of complex proteomes. Capitalizing on the high resolution and mass accuracy of Orbitrap-based tandem mass spectrometry, we developed a simple deconvolution method of "cloning" chimeric tandem spectra for cofragmented peptides. Additional to a database search, a simple rescoring scheme utilizes mass accuracy and converts the unwanted cofragmenting events into a surprising advantage of multiplexing. With the combination of cloning and rescoring, we obtained on average nine peptide-spectrum matches per second on a Q-Exactive workbench, whereas the actual MS/MS acquisition rate was close to seven spectra per second. This efficiency boost to 1.24 identified peptides per MS/MS spectrum enabled analysis of over 5000 human proteins in single-dimensional LC-MS/MS shotgun experiments with an only two-hour gradient. These findings suggest a change in the dominant "one MS/MS spectrum - one peptide" paradigm for data acquisition and analysis in shotgun data-dependent proteomics. DeMix also demonstrated higher robustness than conventional approaches in terms of lower variation among the results of consecutive LC-MS/MS runs.


Subject(s)
Peptide Fragments/analysis , Peptide Fragments/chemistry , Proteomics/methods , Amino Acid Sequence , Cell Line, Tumor , Gene Expression Profiling , HeLa Cells , Humans , Proteome/analysis , Sequence Analysis, Protein/methods , Tandem Mass Spectrometry , Workflow
12.
Anal Chem ; 86(12): 5728-32, 2014 Jun 17.
Article in English | MEDLINE | ID: mdl-24824042

ABSTRACT

Recently, we introduced an online multijunction capillary isoelectric focusing (OMJ-CIEF) fractionator to fractionate proteins and peptides in electrospray-friendly solution. In this follow-up study, the original configuration of the fractionator was modified to improve the resolving power and reproducibility of separation. The major improvements include stabilization of the electrical current through the device using a voltage divider and stepwise elution of peptide zones in conjunction with the repeated refocusing of remaining peptides. Also, a novel algorithm was developed to calculate more accurately the pI values of peptides identified from experimental data. The standard deviation of calculated pI values for unmodified peptides from the theoretically predicted pI values was on average 0.21 pH units, which is more accurate than in standard-resolution gel-based methods. In order to characterize the analytical performance of the improved device, it was applied for the pI fractionation of yeast proteome digest into 18 fractions, with the collected fractions being analyzed by reverse-phase liquid chromatography coupled with tandem mass spectrometry. Approximately 37% of 20047 identified peptides were detected in only one fraction and 27% - in two fractions. On average, every peptide was found in 2.4 fractions. These results strongly indicate the suitability of the improved device as a first dimension of separation in multidimensional shotgun proteomics analysis, with a potential for fully automated workflow.


Subject(s)
Isoelectric Focusing/instrumentation , Membranes, Artificial , Proteomics , Algorithms , Hydrogen-Ion Concentration
13.
Mol Cell Proteomics ; 12(11): 3330-8, 2013 Nov.
Article in English | MEDLINE | ID: mdl-23878402

ABSTRACT

Multiparameter optimization of an LC-MS/MS shotgun proteomics experiment was performed without any hardware or software modification of the commercial instrument. Under the optimized experimental conditions, with a 50-cm-long separation column and a 4-h LC-MS run (including a 3-h optimized gradient), 4,825 protein groups and 37,550 peptides were identified in a single run and 5,354 protein groups and 56,390 peptides in a triplicate analysis of the A375 human cell line, for approximately 50% coverage of the expressed proteome. The major steps enabling such performance included optimization of the cell lysis and protein extraction, digestion of even insoluble cell debris, tailoring the LC gradient profile, and choosing the optimal dynamic exclusion window in data-dependent MS/MS, as well as the optimal m/z scan window.


Subject(s)
Proteome/analysis , Proteomics/methods , Buffers , Cell Line , Chromatography, Liquid/methods , Humans , Proteome/isolation & purification , Proteomics/instrumentation , Proteomics/statistics & numerical data , Tandem Mass Spectrometry/instrumentation , Tandem Mass Spectrometry/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...