Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Bioorg Chem ; 133: 106410, 2023 04.
Article in English | MEDLINE | ID: mdl-36822000

ABSTRACT

Most of the currently available cytotoxic agents for tackling cancer are devoid of selectivity, thus causing severe side-effects. This situation stimulated us to develop new antiproliferative agents with enhanced affinity towards tumour cells. We focused our attention on novel chalcogen-containing compounds (thiosemicarbazones, disulfides, selenoureas, thio- and selenocyanates), and particularly on selenium derivatives, as it has been documented that this kind of compounds might act as prodrugs releasing selenium-based reactive species on tumour cells. Particularly interesting in terms of potency and selectivity was a pharmacophore comprised by a selenocyanato-alkyl fragment connected to a p-phenylenediamine residue, where the nature of the second amino moiety (free, Boc-protected, enamine-protected) provided a wide variety of antiproliferative activities, ranging from the low micromolar to the nanomolar values. The optimized structure was in turn conjugated through a peptide linkage with biotin (vitamin B7), a cellular growth promoter, whose receptor is overexpressed in numerous cancer cells; the purpose was to develop a selective vector towards malignant cells. Such biotinylated derivative behaved as a very strong antiproliferative agent, achieving GI50 values in the low nM range for most of the tested cancer cells; moreover, it was featured with an outstanding selectivity, with GI50 > 100 µM against human fibroblasts. Mechanistic studies on the mode of inhibition of the biotinylated selenocyanate revealed (Annexin-V assay) a remarkable increase in the number of apoptotic cells compared to the control experiment; moreover, depolarization of the mitochondrial membrane was detected by flow cytometry analysis, and with fluorescent microscopy, what supports the apoptotic cell death. Prior to the apoptotic events, cytostatic effects were observed against SW1573 cells using label-free cell-living imaging; therefore, tumour cell division was prevented. Multidrug resistant cell lines exhibited a reduced sensitivity towards the biotinylated selenocyanate, probably due to its P-gp-mediated efflux. Remarkably, antiproliferative levels could be restored by co-administration with tariquidar, a P-gp inhibitor; this approach can, therefore, overcome multidrug resistance mediated by the P-gp efflux system.


Subject(s)
Antineoplastic Agents , Cytostatic Agents , Selenium , Humans , Cytostatic Agents/pharmacology , Cell Line, Tumor , Selenium/pharmacology , Cyanates/pharmacology , Apoptosis , Cell Proliferation , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Structure-Activity Relationship
2.
Dalton Trans ; 51(1): 340-351, 2021 Dec 20.
Article in English | MEDLINE | ID: mdl-34897327

ABSTRACT

Transfer hydrogenation (TH) is a powerful synthetic tool in the production of secondary alcohols from ketones by using a non-H2 hydrogen source along with metal catalysts. Among homogeneous catalysts, Ru(II) complexes are the most efficient catalysts. In our research, six novel ruthenium(II) complexes bearing bipyridine-based ligands [Ru(L1)Cl2] (1), [Ru(L1)(PPh3)Cl]Cl (2) and [Ru(L2)Cl2] (3) and N-heterocyclic carbene-supported pyridine (NCN) ligands [RuCp(L3)]PF6 (4), [RuCp*(L3)]PF6 (5), and [Ru(p-cymene)(L3)Cl]PF6 (6) (where L1 = 6,6'-bis(aminomethyl)-2,2'-bipyridine, L2 = 6,6'-bis(dimethylaminomethyl)-2,2'-bipyridine and L3 = 1,3-bis(2-methylpyridyl)imidazolium bromide) were synthesised and characterised by NMR spectroscopy, HRMS, and X-ray crystallography. The catalytic transfer hydrogenation of 28 ketones in 2-propanol at 80 °C in the presence of KOtBu (5 mol%) was demonstrated and the effect of ligands is highlighted. The results show that catalyst 1 exhibits improved TH efficiency compared to the commercially available Milstein catalyst and displays higher catalytic activity than 2 due to the steric effect from PPh3. From a combination of kinetic data and Eyring analysis, a zero-order dependence on the acetophenone substrate is observed, implying a rate-limiting hydride transfer step, leading to the proposed inner-sphere hydride transfer mechanism.

3.
Acta Crystallogr E Crystallogr Commun ; 74(Pt 4): 563-565, 2018 Apr 01.
Article in English | MEDLINE | ID: mdl-29765768

ABSTRACT

In the title hydrated azo compound, C8H8N6S·H2O, the two aromatic groups are close to coplanar with the dihedral angle between the mean planes of the thia-zole and pyridine rings being 2.9 (2)°. The organic mol-ecule adopts an E configuration with respect to the double bond of the azo bridge. In the crystal, mol-ecules are linked by (amine)N-H⋯N(pyridine), (amine)N-H⋯O(water) and (water)O-H⋯N(thia-zole) hydrogen bonds along with π-π inter-actions involving pairs of thia-zole rings and pairs of pyridine rings. The plane-to-plane distance between two parallel mol-ecules is 3.7856 (4) Šand corresponds to the length of the a axis. In this way, a layer structure parallel to (010) is formed. The layers are linked by weak C-H⋯S hydrogen bonds, eventually resulting in a three-dimensional network.

SELECTION OF CITATIONS
SEARCH DETAIL