Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Mol Hum Reprod ; 25(3): 124-136, 2019 03 01.
Article in English | MEDLINE | ID: mdl-30590698

ABSTRACT

Molecular mechanisms responsible for the initiation of primate spermatogenesis remain poorly characterized. Previously, 48 h stimulation of the testes of three juvenile rhesus monkeys with pulsatile LH and FSH resulted in down-regulation of a cohort of genes recognized to favor spermatogonia stem cell renewal. This change in genetic landscape occurred in concert with amplification of Sertoli cell proliferation and the commitment of undifferentiated spermatogonia to differentiate. In this report, the non-protein coding small RNA transcriptomes of the same testes were characterized using RNA sequencing: 537 mature micro-RNAs (miRNAs), 322 small nucleolar RNAs (snoRNAs) and 49 small nuclear RNAs (snRNAs) were identified. Pathway analysis of the 20 most highly expressed miRNAs suggested that these transcripts contribute to limiting the proliferation of the primate Sertoli cell during juvenile development. Gonadotrophin treatment resulted in differential expression of 35 miRNAs, 12 snoRNAs and four snRNA transcripts. Ten differentially expressed miRNAs were derived from the imprinted delta-like homolog 1-iodothyronine deiodinase 3 (DLK1-DIO3) locus that is linked to stem cell fate decisions. Four gonadotrophin-regulated expressed miRNAs were predicted to trigger a local increase in thyroid hormone activity within the juvenile testis. The latter finding leads us to predict that, in primates, a gonadotrophin-induced selective increase in testicular thyroid hormone activity, together with the established increase in androgen levels, at the onset of puberty is necessary for the normal timing of Sertoli cell maturation, and therefore initiation of spermatogenesis. Further examination of this hypothesis requires that peripubertal changes in thyroid hormone activity of the testis of a representative higher primate be determined empirically.


Subject(s)
MicroRNAs/metabolism , Testis/metabolism , Thyroid Hormones/metabolism , Animals , Follicle Stimulating Hormone/metabolism , Luteinizing Hormone/metabolism , Macaca mulatta , Male , MicroRNAs/genetics , Sequence Analysis, RNA , Signal Transduction/genetics , Signal Transduction/physiology , Spermatogenesis/genetics , Spermatogenesis/physiology , Transcriptome/genetics
2.
Neuroendocrinology ; 103(6): 711-23, 2016.
Article in English | MEDLINE | ID: mdl-26580201

ABSTRACT

Substance P (SP) was recently reported to be expressed in human kisspeptin/neurokinin B/dynorphin (KNDy) neurons and to enhance KNDy neuron excitability in the mouse hypothalamus. We therefore examined (1) interactions of SP and kisspeptin in the mediobasal hypothalamus of adult male rhesus monkeys using immunofluorescence, and (2) the ability of SP to induce LH release in GnRH-primed, agonadal juvenile male monkeys. SP cell bodies were observed only occasionally in the arcuate nucleus (Arc), but more frequently dorsal to the Arc in the region of the premammillary nucleus. Castration resulted in an increase in the number of SP cell bodies in the Arc but not in the other regions. SP fibers innervated the Arc, where they were found in close apposition with kisspeptin perikarya in the periphery of this nucleus. Beaded SP axons projected to the median eminence, where they terminated in the external layer and intermingled with beaded kisspeptin axons. Colocalization of the two peptides, however, was not observed. Although close apposition between SP fibers and kisspeptin neurons suggest a role for SP in modulating GnRH pulse generator activity, i.v. injections of SP failed to elicit release of GnRH (as reflected by LH) in the juvenile monkey. Although the finding of structural interactions between SP and kisspeptin neurons is consistent with the notion that this tachykinin may be involved in regulating pulsatile GnRH release, the apparent absence of expression of SP in KNDy neurons suggests that this peptide is unlikely to be a fundamental component of the primate GnRH pulse generator.


Subject(s)
Gonadotropin-Releasing Hormone/metabolism , Hypothalamus, Middle , Kisspeptins/metabolism , Luteinizing Hormone/metabolism , Peptides/administration & dosage , Substance P/metabolism , Administration, Intravenous , Animals , Castration , Dose-Response Relationship, Drug , Hypothalamus, Middle/cytology , Hypothalamus, Middle/drug effects , Hypothalamus, Middle/metabolism , Macaca mulatta , Male , Neurons/drug effects , Neurons/metabolism
3.
Endocrinology ; 157(1): 323-35, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26556532

ABSTRACT

In rodents, kisspeptin neurons in the rostral periventricular area of the third ventricle (RP3V) of the preoptic area are considered to provide a major stimulatory input to the GnRH neuronal network that is responsible for triggering the preovulatory LH surge. Noradrenaline (NA) is one of the main modulators of GnRH release, and NA fibers are found in close apposition to kisspeptin neurons in the RP3V. Our objective was to interrogate the role of NA signaling in the kisspeptin control of GnRH secretion during the estradiol induced LH surge in ovariectomized rats, using prazosin, an α1-adrenergic receptor antagonist. In control rats, the estradiol-induced LH surge at 17 hours was associated with a significant increase in GnRH and kisspeptin content in the median eminence with the increase in kisspeptin preceding that of GnRH and LH. Prazosin, administered 5 and 3 hours prior to the predicted time of the LH surge truncated the LH surge and abolished the rise in GnRH and kisspeptin in the median eminence. In the preoptic area, prazosin blocked the increases in Kiss1 gene expression and kisspeptin content in association with a disruption in the expression of the clock genes, Per1 and Bmal1. Together these findings demonstrate for the first time that NA modulates kisspeptin synthesis in the RP3V through the activation of α1-adrenergic receptors prior to the initiation of the LH surge and indicate a potential role of α1-adrenergic signaling in the circadian-controlled pathway timing of the preovulatory LH surge.


Subject(s)
Gene Expression Regulation , Kisspeptins/agonists , Luteinizing Hormone/metabolism , Neurons/metabolism , Norepinephrine/metabolism , Preoptic Area/metabolism , Up-Regulation , ARNTL Transcription Factors/agonists , ARNTL Transcription Factors/antagonists & inhibitors , ARNTL Transcription Factors/genetics , ARNTL Transcription Factors/metabolism , Adrenergic alpha-1 Receptor Antagonists/pharmacology , Animals , Estradiol/pharmacology , Estrogen Replacement Therapy , Female , Follicular Phase/drug effects , Gene Expression Regulation/drug effects , Kisspeptins/antagonists & inhibitors , Kisspeptins/genetics , Kisspeptins/metabolism , Nerve Tissue Proteins/agonists , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Neurons/drug effects , Ovariectomy/adverse effects , Period Circadian Proteins/agonists , Period Circadian Proteins/antagonists & inhibitors , Period Circadian Proteins/genetics , Period Circadian Proteins/metabolism , Prazosin/pharmacology , Preoptic Area/drug effects , Rats, Wistar , Receptors, Adrenergic, alpha-1/chemistry , Receptors, Adrenergic, alpha-1/metabolism , Signal Transduction/drug effects , Synaptic Transmission/drug effects , Up-Regulation/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL