Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
J Phys Chem B ; 121(45): 10353-10363, 2017 11 16.
Article in English | MEDLINE | ID: mdl-29050474

ABSTRACT

By combining NMR (yielding 1H chemical shift, spin relaxation, and self-diffusion data) and small-angle X-ray scattering experiments, we investigate the complex temperature dependence of the molecular and aggregate states in aqueous solutions of the surfactant [CH3(CH2)17(OCH2CH2)20OH], abbreviated as C18E20, and hexamethyldisiloxane, HMDSO. The latter molecule serves as a model for hydrophobic solubilizates. Previously, the pure micellar solution was demonstrated to exhibit core freezing at approximately 7-8 °C. At room temperature, we find that HMDSO solubilizes at a volume fraction of approximately 10% in the core of the C18E20 micelles, which consists of molten and thereby highly mobile alkyl chains. Upon lowering the temperature, core freezing is found, just like in pure micelles, but at a temperature shifted significantly to 3 °C. The frozen cores contain immobile alkyl chains and exhibit a higher density but are essentially devoid (volume fraction below 1%) of the solubilizate. The latter molecules are released, first gradually and then rather steeply, from the core in the temperature range that is roughly delimited by the two core freezing temperatures, one for pure micelles and one for micelles with solubilizates. The release behavior of systems with different initial HMDSO loading follows the same master curve. This feature is rationalized in terms of loading capacity being strongly temperature dependent: upon lowering the temperature, release commences once the loading capacity descends below the actual solubilizate content. The sharp release curves and the actual release mechanism with its molecular features shown in rich detail have some bearing on a diverse class of possible applications.

2.
Int J Pharm ; 531(2): 433-443, 2017 Oct 15.
Article in English | MEDLINE | ID: mdl-28242378

ABSTRACT

Host-guest nanoassemblies made from spontaneous self-association of host and guest polymers in aqueous solutions have been studied. The specific motivation behind this work was to clarify the impact of the molecular design of the polymers on the interactions between them and on the inner structure of the resulting nanoassemblies. The polymers were composed of a dextran backbone, functionalized with either pendant ß-cyclodextrin (CD) or adamantyl (Ada). Those groups were connected to the backbone either directly or with hydrophilic polyethylene glycol (PEG) spacers. To study the impact of those spacers we have proposed a synthetic pathway to new guest polymers. The latter relied on the use of thiol-substituted dextrans as a scaffold, which is subsequently transformed into PEG-Ada grafted guest polymers via nucleophile-mediated thiol-click reaction. Surface plasmon resonance (SPR) studies evidenced strong mutual affinities between the host and guest polymers and showed that the stoichiometry was close to the ideal one (CD/Ada = 1/1) when PEG spacers were introduced. The structure of the nanoassemblies was studied by a combination of dynamic light scattering (DLS) and small-angle X-ray scattering (SAXS). The nature of the individual host or guest polymers has a strong impact on the size and internal structure of the resulting nanoassemblies. The presence of PEG spacers in the polymers led to smaller and less compact nanoassemblies, as evidenced by their large correlation length values (4-20nm compared to 2nm without PEG spacers). At the same time, all types of nanoassemblies appear to have radial density distribution with denser cores and pending polymer chains at the periphery. This study, centered on the influence of the molecular design on the host-guest interactions and structural ordering in polymeric nanoassemblies, will help to tailor host-guest nanoassemblies with attractive drug delivery profiles.


Subject(s)
Drug Carriers/chemistry , Nanotechnology , Polymers/chemistry , Hydrophobic and Hydrophilic Interactions , Polyethylene Glycols , Scattering, Small Angle , X-Ray Diffraction , beta-Cyclodextrins/chemistry
3.
J Polym Sci B Polym Phys ; 54(19): 1913-1917, 2016 Oct 01.
Article in English | MEDLINE | ID: mdl-27840558

ABSTRACT

Determination of molecular masses of charged polymers is often nontrivial and most methods have their drawbacks. For polyelectrolytes, a new possibility for the determination of number-average molecular masses is represented by small-angle X-ray scattering (SAXS) which allows fast determinations with a 10% accuracy. This is done by relating the mass to the position of a characteristic peak feature which arises in SAXS due to the local ordering caused by charge-repulsions between polyelectrolytes. Advantages of the technique are the simplicity of data analysis, the independency from polymer architecture, and the low sample and time consumption. The method was tested on polyelectrolytes of various structures and chemical compositions, and the results were compared with those obtained from more conventional techniques, such as asymmetric flow field-flow fractionation, gel permeation chromatography, and classical SAXS data analysis, showing that the accuracy of the suggested method is similar to that of the other techniques. © 2016 The Authors. Journal of Polymer Science Part B: Polymer Physics Published by Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2016, 54, 1913-1917.

4.
J Phys Chem B ; 119(33): 10798-806, 2015 Aug 20.
Article in English | MEDLINE | ID: mdl-26226298

ABSTRACT

Nonionic surfactants containing poly(ethylene oxide) are chemically simple and biocompatible and form core-shell micelles at a wide range of conditions. For those reasons, they and their aggregates have been widely investigated. Recently, irregularities that were observed in the low-temperature behavior of surfactants of the kind [CH3(CH2)(n)O(CH2CH2O)(m)H], (abbreviated CnEm) were assigned to a freezing-melting phase transition in the micellar core. In this work we expand the focus from the case of single component systems to binary surfactant systems at temperatures between 1 and 15 °C. By applying small-angle X-ray scattering (SAXS), differential scanning calorimetry (DSC), nuclear magnetic resonance (NMR), and density measurements in pure C18E20 and C18E100 solutions and their mixtures, we show that core freezing/melting is also present in mixtures. Additionally, comparing SAXS data obtained from the mixture with those from the single components, it was possible to demonstrate that the phase transition leads to a reversible segregation of the surfactants from mixed micelles to distinct kinds of micelles of the two components.

5.
Langmuir ; 31(26): 7242-50, 2015 Jul 07.
Article in English | MEDLINE | ID: mdl-26057578

ABSTRACT

The soluble complexes of oppositely charged macromolecules and amphiphiles, formed in the one-phase concentration range, are usually described on the basis of the beads on a string model assuming spherelike bound surfactant micelles. However, around and above the charge neutralization ionic surfactant to polyion ratio, a variety of ordered structures of the precipitates and large polyion/surfactant aggregates have been reported for the different systems which are difficult to connect to globular-like surfactant self-assembly units. In this article we have demonstrated through SAXS measurements that the structure of precipitates and those of the soluble polyion/mixed surfactant complexes of poly(diallyldimethylammonium chloride) (PDADMAC), sodium dodecyl sulfate (SDS), and dodecyl-maltoside (DDM) are strongly correlated. Specifically, SDS binds to the PDADMAC molecules in the form of small cylindrical surfactant micelles even at very low SDS-to-PDADMAC ratios. In this way, these anisometric surfactant self-assemblies formed in excess polyelectrolyte mimic the basic building units of the hexagonal structure of the PDADMAC/SDS precipitate and/or suspensions formed at charge equivalence or at higher SDS-to-PDADMAC ratios. The presence of DDM reduces the cmc and cac for the system but does not alter significantly the structure of the complexes in either the one-phase or two-phase region. The only exception is for samples at SDS-to-PDADMAC ratios close to charge neutralization and a high concentration of DDM where the precipitate forms a multiphasic or distorted hexagonal structure.

SELECTION OF CITATIONS
SEARCH DETAIL
...