Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Int J Mol Sci ; 24(4)2023 Feb 10.
Article in English | MEDLINE | ID: mdl-36834975

ABSTRACT

Ageing and deterioration of seeds is a major problem for the maintenance of seed quality and viability during long-term storage. Prediction of early stages of seed deterioration in order to point out the plantlets' regeneration time is a major challenge of successful storage. In preserved seeds, damages accumulate within cells at the rate mainly related to their moisture content and temperature of storage. Current research reveals global alterations in DNA methylation in lipid-rich intermediate seeds during desiccation and storage at various regimes covering nonoptimal and optimal conditions. We show for the first time that monitoring of 5-methylcytosine (m5C) level in seeds can be used as a truly universal viability marker regardless of postharvest category of seeds and their composition. For seeds stored up to three years, in varied conditions, moisture content, temperature, and time of storage had significant influence on seedling emergence and DNA methylation (p < 0.05). Similarities among lipid-rich intermediate and orthodox seeds regarding different reactions of embryonic axes and cotyledons to desiccation are newly revealed. Along with previous studies on seeds dramatically different in desiccation tolerance (recalcitrant vs. orthodox), results regarding lipid-rich seeds positioned in-between (intermediate) prove that maintaining global DNA methylation status is crucial for maintaining seed viability.


Subject(s)
DNA Methylation , Fagus , Desiccation , Seeds/genetics , Lipids , Germination
2.
Cells ; 11(13)2022 06 30.
Article in English | MEDLINE | ID: mdl-35805164

ABSTRACT

Ex situ preservation of genetic resources is an essential strategy for the conservation of plant biodiversity. In this regard, seed storage is the most convenient and efficient way of preserving germplasm for future plant breeding efforts. A better understanding of the molecular changes that occur during seed desiccation and aging is necessary to improve conservation protocols, as well as real-time methods for monitoring seed quality. In the present study, we assessed changes in the level of genomic 5-methylcytosine (5mC) in seeds of Populus nigra L. by 2D-TLC. Epigenetic changes were characterized in response to several seed storage regimes. Our results demonstrate that P. nigra seeds represent an intermediate type of post-harvest behavior, falling between recalcitrant and orthodox seeds. This was also true for the epigenetic response of P. nigra seeds to external factors. A crucial question is whether aging in seeds is initiated by a decline in the level of 5mC, or if epigenetic changes induce a process that leads to deterioration. In our study, we demonstrate for the first time that 5mC levels decrease during storage and that the decline can be detected before any changes in seed germination are evident. Once P. nigra seeds reached an 8-10% reduction in the level of 5mC, a substantial decrease in germination occurred. The decline in the level of 5mC appears to be a critical parameter underlying the rapid deterioration of intermediate seeds. Thus, the measurement of 5mC can be a fast, real-time method for assessing asymptomatic aging in stored seeds.


Subject(s)
DNA Methylation , Populus , DNA Methylation/genetics , Germination , Plants , Populus/genetics , Seeds/genetics
3.
Plants (Basel) ; 12(1)2022 Dec 23.
Article in English | MEDLINE | ID: mdl-36616200

ABSTRACT

Seeds are the most commonly used source of storage material to preserve the genetic diversity of plants. However, prior to the deposition of seeds in gene banks, several questions need to be addressed. Here, we illustrate the scheme that can be used to ensure that the most optimal conditions are identified to enable the long-term storage of seeds. The main questions that need to be answered pertain to the production of viable seeds by plants, the availability of proper protocols for dormancy alleviation and germination, seed tolerance to desiccation and cold storage at -20 °C. Finally, it is very important to fully understand the capability or lack thereof for seeds or their explants to tolerate cryogenic conditions. The proper storage regimes for orthodox, intermediate and recalcitrant seeds are discussed.

SELECTION OF CITATIONS
SEARCH DETAIL