Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Publication year range
1.
Org Biomol Chem ; 18(33): 6531-6536, 2020 08 26.
Article in English | MEDLINE | ID: mdl-32766664

ABSTRACT

Several thieno[2,3-h]-/[3,2-h]- and [2,3-f]quinolines have been synthesised from 2,3-dihalogenated pyridines or -quinolines by site-selective Pd catalysed cross-coupling reactions and Brønsted acid mediated cycloisomerisations as the final key step. This newly developed synthetic strategy is used in a modular way to synthesize diverse regioisomeric derivatives, tolerates various functional groups, and proceeds with high selectivity, and the desired final products have been isolated in high overall yields.

2.
Article in English | MEDLINE | ID: mdl-27619487

ABSTRACT

The aim of this study was the characterization of transcriptional regulatory pathways mediated by retinoic acid (RA) in Senegalese sole larvae. For this purpose, pre-metamorphic larvae were treated with a low concentration of DEAB, an inhibitor of RALDH enzyme, until the end of metamorphosis. No differences in growth, eye migration or survival were observed. Nevertheless, gene expression analysis revealed a total of 20 transcripts differentially expressed during larval development and only six related with DEAB treatments directly involved in RA metabolism and actions (rdh10a, aldh1a2, crbp1, igf2r, rarg and cyp26a1) to adapt to a low-RA environment. In a second experiment, post-metamorphic larvae were exposed to the all-trans RA (atRA) observing an opposite regulation for those genes involved in RA synthesis and degradation (rdh10a, aldh1a2, crbp1 and cyp26a1) as well as other related with thyroid- (dio2) and IGF-axes (igfbp1, igf2r and igfbp5) to balance RA levels. In a third experiment, DEAB-pretreated post-metamorphic larvae were exposed to atRA and TTNPB (a specific RAR agonist). Both drugs down-regulated rdh10a and aldh1a2 and up-regulated cyp26a1 expression demonstrating their important role in RA homeostasis. Moreover, five retinoic receptors that mediate RA actions, the thyroid receptor thrb, and five IGF binding proteins changed differentially their expression. Overall, this study demonstrates that exogenous RA modulates the expression of some genes involved in the RA synthesis, degradation and cellular transport through RAR-mediated regulatory pathways establishing a negative feedback regulatory mechanism necessary to balance endogenous RA levels and gradients.


Subject(s)
Flatfishes/genetics , Flatfishes/metabolism , Gene Expression Regulation , Larva/genetics , Larva/metabolism , Tretinoin/metabolism , Animals , Benzoates/pharmacology , Gene Expression Regulation/drug effects , Larva/growth & development , Metamorphosis, Biological/drug effects , Metamorphosis, Biological/genetics , Receptors, Retinoic Acid/agonists , Receptors, Retinoic Acid/genetics , Receptors, Retinoic Acid/metabolism , Retinoids/pharmacology , p-Aminoazobenzene/analogs & derivatives , p-Aminoazobenzene/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL