Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters











Database
Language
Publication year range
2.
J Biol Chem ; 295(52): 17935-17949, 2020 12 25.
Article in English | MEDLINE | ID: mdl-32900849

ABSTRACT

The tenovins are a frequently studied class of compounds capable of inhibiting sirtuin activity, which is thought to result in increased acetylation and protection of the tumor suppressor p53 from degradation. However, as we and other laboratories have shown previously, certain tenovins are also capable of inhibiting autophagic flux, demonstrating the ability of these compounds to engage with more than one target. In this study, we present two additional mechanisms by which tenovins are able to activate p53 and kill tumor cells in culture. These mechanisms are the inhibition of a key enzyme of the de novo pyrimidine synthesis pathway, dihydroorotate dehydrogenase (DHODH), and the blockage of uridine transport into cells. These findings hold a 3-fold significance: first, we demonstrate that tenovins, and perhaps other compounds that activate p53, may activate p53 by more than one mechanism; second, that work previously conducted with certain tenovins as SirT1 inhibitors should additionally be viewed through the lens of DHODH inhibition as this is a major contributor to the mechanism of action of the most widely used tenovins; and finally, that small changes in the structure of a small molecule can lead to a dramatic change in the target profile of the molecule even when the phenotypic readout remains static.


Subject(s)
Acetanilides/pharmacology , Enzyme Inhibitors/pharmacology , Neoplasms/drug therapy , Oxidoreductases Acting on CH-CH Group Donors/antagonists & inhibitors , Polypharmacology , Sirtuin 1/antagonists & inhibitors , Thiourea/analogs & derivatives , Tumor Suppressor Protein p53/metabolism , Autophagy , Cell Proliferation , Dihydroorotate Dehydrogenase , Humans , Neoplasms/metabolism , Neoplasms/pathology , Oxidoreductases Acting on CH-CH Group Donors/metabolism , Thiourea/pharmacology , Tumor Cells, Cultured , Tumor Suppressor Protein p53/genetics
3.
J Med Chem ; 63(8): 3915-3934, 2020 04 23.
Article in English | MEDLINE | ID: mdl-32212728

ABSTRACT

Human dihydroorotate dehydrogenase (DHODH), an enzyme in the de novo pyrimidine synthesis pathway, is a target for the treatment of rheumatoid arthritis and multiple sclerosis and is re-emerging as an attractive target for cancer therapy. Here we describe the optimization of recently identified tetrahydroindazoles (HZ) as DHODH inhibitors. Several of the HZ analogues synthesized in this study are highly potent inhibitors of DHODH in an enzymatic assay, while also inhibiting cancer cell growth and viability and activating p53-dependent transcription factor activity in a reporter cell assay. Furthermore, we demonstrate the specificity of the compounds toward the de novo pyrimidine synthesis pathway through supplementation with an excess of uridine. We also show that induction of the DNA damage marker γ-H2AX after DHODH inhibition is preventable by cotreatment with the pan-caspase inhibitor Z-VAD-FMK. Additional solubility and in vitro metabolic stability profiling revealed compound 51 as a favorable candidate for preclinical efficacy studies.


Subject(s)
Enzyme Inhibitors/chemistry , Enzyme Inhibitors/metabolism , Indazoles/chemistry , Indazoles/metabolism , Oxidoreductases Acting on CH-CH Group Donors/antagonists & inhibitors , Oxidoreductases Acting on CH-CH Group Donors/metabolism , Animals , Cell Survival/drug effects , Cell Survival/physiology , Dihydroorotate Dehydrogenase , Dose-Response Relationship, Drug , Drug Evaluation, Preclinical/methods , Enzyme Inhibitors/pharmacology , Female , Humans , Indazoles/pharmacology , Mice , Microsomes, Liver/drug effects , Microsomes, Liver/metabolism
4.
Nat Commun ; 9(1): 2071, 2018 05 22.
Article in English | MEDLINE | ID: mdl-29789663

ABSTRACT

The original PDF version of this Article listed the authors as "Marcus J.G.W. Ladds," where it should have read "Marcus J. G. W. Ladds, Ingeborg M. M. van Leeuwen, Catherine J. Drummond et al.#".Also in the PDF version, it was incorrectly stated that "Correspondence and requests for materials should be addressed to S. Lín.", instead of the correct "Correspondence and requests for materials should be addressed to S. Laín."This has been corrected in the PDF version of the Article. The HTML version was correct from the time of publication.

5.
PLoS One ; 13(4): e0195956, 2018.
Article in English | MEDLINE | ID: mdl-29684045

ABSTRACT

Tenovin-6 is the most studied member of a family of small molecules with antitumour activity in vivo. Previously, it has been determined that part of the effects of tenovin-6 associate with its ability to inhibit SirT1 and activate p53. However, tenovin-6 has also been shown to modulate autophagic flux. Here we show that blockage of autophagic flux occurs in a variety of cell lines in response to certain tenovins, that autophagy blockage occurs regardless of the effect of tenovins on SirT1 or p53, and that this blockage is dependent on the aliphatic tertiary amine side chain of these molecules. Additionally, we evaluate the contribution of this tertiary amine to the elimination of proliferating melanoma cells in culture. We also demonstrate that the presence of the tertiary amine is sufficient to lead to death of tumour cells arrested in G1 phase following vemurafenib treatment. We conclude that blockage of autophagic flux by tenovins is necessary to eliminate melanoma cells that survive B-Raf inhibition and achieve total tumour cell kill and that autophagy blockage can be achieved at a lower concentration than by chloroquine. This observation is of great relevance as relapse and resistance are frequently observed in cancer patients treated with B-Raf inhibitors.


Subject(s)
Antineoplastic Agents/pharmacology , Autophagy/drug effects , Benzamides/pharmacology , Indoles/pharmacology , Melanoma/genetics , Proto-Oncogene Proteins B-raf/genetics , Sulfonamides/pharmacology , Antineoplastic Agents/chemistry , Benzamides/chemistry , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Drug Resistance, Neoplasm/drug effects , Drug Synergism , Gene Expression Regulation, Neoplastic/drug effects , Humans , Melanoma/drug therapy , Molecular Structure , Mutation , Sirtuins/genetics , Tumor Suppressor Protein p53/genetics , Vemurafenib
6.
Nat Commun ; 9(1): 1107, 2018 03 16.
Article in English | MEDLINE | ID: mdl-29549331

ABSTRACT

The development of non-genotoxic therapies that activate wild-type p53 in tumors is of great interest since the discovery of p53 as a tumor suppressor. Here we report the identification of over 100 small-molecules activating p53 in cells. We elucidate the mechanism of action of a chiral tetrahydroindazole (HZ00), and through target deconvolution, we deduce that its active enantiomer (R)-HZ00, inhibits dihydroorotate dehydrogenase (DHODH). The chiral specificity of HZ05, a more potent analog, is revealed by the crystal structure of the (R)-HZ05/DHODH complex. Twelve other DHODH inhibitor chemotypes are detailed among the p53 activators, which identifies DHODH as a frequent target for structurally diverse compounds. We observe that HZ compounds accumulate cancer cells in S-phase, increase p53 synthesis, and synergize with an inhibitor of p53 degradation to reduce tumor growth in vivo. We, therefore, propose a strategy to promote cancer cell killing by p53 instead of its reversible cell cycle arresting effect.


Subject(s)
Antineoplastic Agents/pharmacology , Enzyme Inhibitors/pharmacology , Indazoles/pharmacology , Neoplasms/metabolism , Oxidoreductases Acting on CH-CH Group Donors/antagonists & inhibitors , Tumor Suppressor Protein p53/metabolism , Cell Cycle/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Dihydroorotate Dehydrogenase , Humans , Neoplasms/drug therapy , Neoplasms/enzymology , Neoplasms/genetics , Oxidoreductases Acting on CH-CH Group Donors/chemistry , Oxidoreductases Acting on CH-CH Group Donors/genetics , Oxidoreductases Acting on CH-CH Group Donors/metabolism , Proteolysis/drug effects , Tumor Suppressor Protein p53/genetics
7.
Cell Chem Biol ; 25(3): 309-317.e4, 2018 03 15.
Article in English | MEDLINE | ID: mdl-29358052

ABSTRACT

The interactions between proteins and biological membranes are important for drug development, but remain notoriously refractory to structural investigation. We combine non-denaturing mass spectrometry (MS) with molecular dynamics (MD) simulations to unravel the connections among co-factor, lipid, and inhibitor binding in the peripheral membrane protein dihydroorotate dehydrogenase (DHODH), a key anticancer target. Interrogation of intact DHODH complexes by MS reveals that phospholipids bind via their charged head groups at a limited number of sites, while binding of the inhibitor brequinar involves simultaneous association with detergent molecules. MD simulations show that lipids support flexible segments in the membrane-binding domain and position the inhibitor and electron acceptor-binding site away from the membrane surface, similar to the electron acceptor-binding site in respiratory chain complex I. By complementing MS with MD simulations, we demonstrate how a peripheral membrane protein uses lipids to modulate its structure in a similar manner as integral membrane proteins.


Subject(s)
Oxidoreductases Acting on CH-CH Group Donors/metabolism , Phospholipids/metabolism , Binding Sites , Cell Membrane/metabolism , Dihydroorotate Dehydrogenase , Electrons , Humans , Ligands , Molecular Dynamics Simulation , Oxidoreductases Acting on CH-CH Group Donors/chemistry , Oxidoreductases Acting on CH-CH Group Donors/genetics , Phospholipids/chemistry , Protein Structure, Tertiary , Recombinant Proteins/biosynthesis , Recombinant Proteins/chemistry , Recombinant Proteins/isolation & purification , Spectrometry, Mass, Electrospray Ionization
SELECTION OF CITATIONS
SEARCH DETAIL