Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
PLoS One ; 10(3): e0122182, 2015.
Article in English | MEDLINE | ID: mdl-25811378

ABSTRACT

Banana wilt outbreaks that are attributable to Moko disease-causing strains of the pathogen Ralstonia solanacearum (Rs) remain a social and economic burden for both multinational corporations and subsistence farmers. All known Moko strains belong to the phylotype II lineage, which has been previously recognized for its broad genetic basis. Moko strains are paraphyletic and are distributed among seven related but distinct phylogenetic clusters (sequevars) that are potentially major threats to Musaceae, Solanaceae, and ornamental crops in many countries. Although clustered within the Moko IIB-4 sequevar, strains of the epidemiologically variant IIB-4NPB do not cause wilt on Cavendish or plantain bananas; instead, they establish a latent infection in the vascular tissues of plantains and demonstrate an expanded host range and high aggressiveness toward Solanaceae and Cucurbitaceae. Although most molecular diagnostic methods focus on strains that wilt Solanaceae (particularly potato), no relevant protocol has been described that universally detects strains of the Musaceae-infecting Rs phylotype II. Thus, a duplex PCR assay targeting Moko and IIB-4NPB variant strains was developed, and its performance was assessed using an extensive collection of 111 strains representing the known diversity of Rs Moko-related strains and IIB-4NPB variant strains along with certain related strains and families. The proposed diagnostic protocol demonstrated both high accuracy (inclusivity and exclusivity) and high repeatability, detected targets on either pure culture or spiked plant extracts. Although they did not belong to the Moko clusters described at the time of the study, recently discovered banana-infecting strains from Brazil were also detected. According to our comprehensive evaluation, this duplex PCR assay appears suitable for both research and diagnostic laboratories and provides reliable detection of phylotype II Rs strains that infect Musaceae.


Subject(s)
Musa/microbiology , Ralstonia solanacearum/classification , Ralstonia solanacearum/genetics , Biodiversity , Brazil , Musa/virology , Phylogeny , Plant Diseases/microbiology , Polymerase Chain Reaction , Reproducibility of Results , Sensitivity and Specificity
2.
Phytopathology ; 104(11): 1175-82, 2014 Nov.
Article in English | MEDLINE | ID: mdl-24848276

ABSTRACT

The epidemic situation of Moko disease-causing strains in Latin America and Brazil is unclear. Thirty-seven Ralstonia solanacearum strains from Brazil that cause the Moko disease on banana and heliconia plants were sampled and phylogenetically typed using the endoglucanase (egl) and DNA repair (mutS) genes according to the phylotype and sequevar classification. All of the strains belonged to phylotype II and a portion of the strains was typed as the Moko disease-related sequevars IIA-6 and IIA-24. Nevertheless, two unsuspected sequevars also harbored the Moko disease-causing strains IIA-41 and IIB-25, and a new sequevar was described and named IIA-53. All of the strains were pathogenic to banana and some of the strains of sequevars IIA-6, IIA-24, and IIA-41 were also pathogenic to tomato. The Moko disease-causing strains from sequevar IIB-25 were pathogenic to potato but not to tomato. These results highlight the high diversity of strains of Moko in Brazil, reinforce the efficiency of the egl gene to reveal relationships among these strains, and contribute to a better understanding of the diversity of paraphyletic Moko disease-causing strains of the R. solanacearum species complex, where the following seven distinct genetic clusters have been described: IIA-6, IIA-24, IIA-41, IIA-53, IIB-3, IIB-4, and IIB-25.


Subject(s)
Genetic Variation , Heliconiaceae/microbiology , Musa/microbiology , Plant Diseases/microbiology , Ralstonia solanacearum/genetics , Base Sequence , Brazil , DNA, Bacterial/chemistry , DNA, Bacterial/genetics , Molecular Sequence Data , Phylogeny , Ralstonia solanacearum/pathogenicity , Sequence Analysis, DNA
3.
Appl Environ Microbiol ; 73(21): 6790-801, 2007 Nov.
Article in English | MEDLINE | ID: mdl-17720825

ABSTRACT

We investigated a destructive pathogenic variant of the plant pathogen Ralstonia solanacearum that was consistently isolated in Martinique (French West Indies). Since the 1960s, bacterial wilt of solanaceous crops in Martinique has been caused primarily by strains of R. solanacearum that belong to either phylotype I or phylotype II. Since 1999, anthurium shade houses have been dramatically affected by uncharacterized phylotype II strains that also affected a wide range of species, such as Heliconia caribea, cucurbitaceous crops, and weeds. From 1989 to 2003, a total of 224 R. solanacearum isolates were collected and compared to 6 strains isolated in Martinique in the 1980s. The genetic diversity and phylogenetic position of selected strains from Martinique were assessed (multiplex PCRs, mutS and egl DNA sequence analysis) and compared to the genetic diversity and phylogenetic position of 32 reference strains covering the known diversity within the R. solanacearum species complex. Twenty-four representative isolates were tested for pathogenicity to Musa species (banana) and tomato, eggplant, and sweet pepper. Based upon both PCR and sequence analysis, 119 Martinique isolates from anthurium, members of the family Cucurbitaceae, Heliconia, and tomato, were determined to belong to a group termed phylotype II/sequevar 4 (II/4). While these strains cluster with the Moko disease-causing strains, they were not pathogenic to banana (NPB). The strains belonging to phylotype II/4NPB were highly pathogenic to tomato, eggplant, and pepper, were able to wilt the resistant tomato variety Hawaii7996, and may latently infect cooking banana. Phylotype II/4NPB constitutes a new pathogenic variant of R. solanacearum that has recently appeared in Martinique and may be latently prevalent throughout Caribbean and Central/South America.


Subject(s)
Genetic Variation , Genome, Bacterial/genetics , Ralstonia solanacearum/pathogenicity , Solanaceae/microbiology , DNA, Bacterial/analysis , Genes, Bacterial/genetics , Phylogeny , Ralstonia solanacearum/classification , Ralstonia solanacearum/isolation & purification , Sequence Analysis, DNA , Virulence Factors/genetics , West Indies
SELECTION OF CITATIONS
SEARCH DETAIL