Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
Cytotechnology ; 68(4): 1185-95, 2016 Aug.
Article in English | MEDLINE | ID: mdl-25944665

ABSTRACT

Alternatives to the use of fetal bovine serum (FBS) have been investigated to ensure xeno-free growth condition. In this study we evaluated the efficacy of human platelet lysate (PL) as a substitute of FBS for the in vitro culture of some human cell lines. PL was obtained by pools of pathogen inactivated human donor platelet (PLT) concentrates. Human leukemia cell lines (KG-1, K562, JURKAT, HL-60) and epithelial tumor cell lines (HeLa and MCF-7) were cultured with either FBS or PL. Changes in cell proliferation, viability, morphology, surface markers and cell cycle were evaluated for each cell line. Functional characteristics were analysed by drug sensitivity test and cytotoxicity assay. Our results demonstrated that PL can support growth and expansion of all cell lines, although the cells cultured in presence of PL experienced a less massive proliferation compared to those grown with FBS. We found a comparable percentage of viable specific marker-expressing cells in both conditions, confirming lineage fidelity in all cultures. Functionality assays showed that cells in both FBS- and PL-supported cultures maintained their normal responsiveness to adriamycin and NK cell-mediated lysis. Our findings indicate that PL is a feasible serum substitute for supporting growth and propagation of haematopoietic and epithelial cell lines with many advantages from a perspective of process standardization, ethicality and product safety.

2.
Int J Gynecol Cancer ; 18(3): 506-14, 2008.
Article in English | MEDLINE | ID: mdl-17868344

ABSTRACT

Cancer stem cells have been isolated from several solid tumors including prostate, colon, liver, breast, and ovarian cancer. Stem cells isolated from nervous system and prostate express CD133 antigen, which is widely used to isolate hematopoietic stem and progenitor cells. The aims of this study were to investigate the expression of the CD133-1 and CD133-2 epitopes in primary ovarian tumors and to biologically characterize CD133(+) ovarian cancer cells, also according to clinicopathologic parameters. Tissue specimens were obtained at primary surgery from 41 ovarian carcinomas; eight normal ovaries and five benign ovarian tumors were also collected. Flow cytometry with monoclonal antibodies against CD133-1 and CD133-2 epitopes was employed. FACS (fluorescence activated cell sorting) analysis enabled the selection of CD133(+) cells, whose epithelial origin was confirmed by immunofluorescence analysis with monoclonal anti-cytokeratin 7. CD133(+) cells gave rise to a 4.7 +/- 0.9-fold larger number of colonies than that documented in CD133(-) population (P < 0.001). Moreover, CD133(+) cells showed an enhanced proliferative potential compared to CD133(-) cells. The percentages of CD133-1- and CD133-2-expressing cells were significantly lower in normal ovaries/benign tumors with respect to those in ovarian carcinoma. Both the percentages of CD133-1- and CD133-2-expressing cells were significantly lower in omental metastases than in primary ovarian cancer (P = 0.009 and 0.007 for CD133-1- and CD133-2-expressing cells, respectively). There seems not to be any difference in the distribution of the percentage of CD133-1- and CD133-2-expressing cells according to clinicopathologic parameters and response to primary chemotherapy. CD133-1 and CD133-2 may be useful in order to select and enrich the population of CD133(+) ovarian tumor cells, which are characterized by a higher clonogenic efficiency and proliferative potential.


Subject(s)
Antigens, CD/metabolism , Biomarkers, Tumor/metabolism , Glycoproteins/metabolism , Neoplasm Invasiveness/pathology , Ovarian Neoplasms/mortality , Ovarian Neoplasms/pathology , Peptides/metabolism , AC133 Antigen , Adult , Aged , Cohort Studies , Female , Flow Cytometry , Fluorescent Antibody Technique , Gene Expression Regulation, Neoplastic , Humans , Immunohistochemistry , Middle Aged , Neoplasm Staging , Ovarian Neoplasms/genetics , Probability , Prognosis , Reference Values , Reverse Transcriptase Polymerase Chain Reaction , Risk Assessment , Sensitivity and Specificity , Survival Analysis
3.
Int Arch Allergy Immunol ; 131(2): 80-4, 2003 Jun.
Article in English | MEDLINE | ID: mdl-12811015

ABSTRACT

Nerve growth factor (NGF) is a neutrophin exerting an important role in the development and functions of the central and peripheral nervous system. However, it has recently been documented that several immune cells - such as mast cells, lymphocytes and eosinophils - produce, store and release NGF. Moreover, NGF high and low affinity receptors are widely expressed in the immune system, thus indicating the potential of responding to this neurotrophin through an autocrine mechanism. In fact, NGF influences development differentiation, chemotaxis and mediator release of inflammatory cells as well as fibroblast activation through a complex network influenced by other pro-inflammatory cytokines. Finally, NGF is increased in biological fluids of several allergic, immune and inflammatory diseases. Data reviewed suggest, therefore, that NGF might also be viewed as a (Th2?) cytokine with a modulatory role in allergic inflammation and tissue remodeling.


Subject(s)
Cytokines/immunology , Immune System Diseases/immunology , Immune System/cytology , Immune System/immunology , Nerve Growth Factor/immunology , Cytokines/physiology , Humans , Hypersensitivity/immunology , Inflammation/immunology , Nerve Growth Factor/physiology
4.
Allergy ; 57 Suppl 72: 13-5, 2002.
Article in English | MEDLINE | ID: mdl-12144547

ABSTRACT

An increasing body of evidence shows that nerve growth factor (NGF) exerts biological activity not only on the central and peripheral nervous system, but also on the immune system thereby influencing allergic diseases and asthma. (1) NGF circulating levels are increased in patients with allergic diseases and asthma, and are related to the severity of the inflammatory process and disease. In vernal keratoconjunctivitis, NGF plasma levels correlate with the number of mast cells infiltrating the conjunctiva, and NGF mRNA is increased in nasal mucosal scrapings of patients with allergic rhinitis who have high levels of NGF in serum and nasal fluids; NGF is further increased in nasal fluids after specific allergen challenge. (2) NGF is produced and released by several modulatory and effector cells of allergic inflammation and asthma, for example T-helper 2 lymphocytes, mast cells and eosinophils. (3) NGF receptors are expressed on the conjunctival epithelium of patients with allergic conjunctivitis and the number of NGF-receptor positive cells is increased in the conjunctiva of these patients. Indeed, local administration of NGF induces fibroblast activation and healing processes of human corneal ulcers, which suggests that NGF plays a role in tissue remodelling processes occurring in asthma. (4) NGF increases airway hyperreactivity to histamine in an animal model of asthma, while anti-NGF treatment reduces airway hyperreactivity induced by ovalbumin topical challenge in the sensitized mouse.


Subject(s)
Asthma/metabolism , Nerve Growth Factor/metabolism , Animals , Humans , Hypersensitivity/metabolism , Nerve Growth Factor/physiology
SELECTION OF CITATIONS
SEARCH DETAIL